Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Curr Microbiol ; 79(12): 372, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36269434

RESUMEN

The main objective of this investigation was to characterize a collection of actinomycetes strains isolated from unexplored polluted ecosystems and to evaluate their antimicrobial potential in order to discover interesting bioactive compounds. Based on morphological and culture characters, 32 different strains were isolated: 20 strains from compost heap, seven strains from manure, and five strains from waste water. As expected, the genus Streptomyces was the most prevalent followed by the genus Micromonospora. Analysis of the antimicrobial activities of the isolated strains showed that those from compost heap were more efficient against the tested microorganisms (Candida albicans, Methicillin-resistant Staphylococcus aureus, Staphylococcus aureus, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli). Several bioactive compounds were identified by liquid chromatography (LC) combined with mass spectrometry (MS) and then analyzed by both MEDINA's database, which contains the most common secondary metabolites, and Dictionary of Natural Products Chapman & Hall. Many interesting well-known and unknown biomolecules were identified. Quinomycin A and Daidzein were the most fascinating compounds isolated, respectively, by Streptomyces sp. WW2 and Streptomyces sp. WW4. The most active strain was identified based on 16S rDNA's sequences and it seems to be a new strain. The crude extract of the strain CH12 was analyzed and the UV absorption spectra and mass spectra (MS) of the main active compound were reported. It's an interesting compound (possible purpuromycin) with the molecular formula C26H18O13.


Asunto(s)
Actinobacteria , Antiinfecciosos , Productos Biológicos , Equinomicina , Staphylococcus aureus Resistente a Meticilina , Streptomyces , Actinobacteria/genética , Actinomyces , Ecosistema , Equinomicina/metabolismo , Estiércol , Aguas Residuales , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Antibacterianos/química , Streptomyces/genética , Antiinfecciosos/farmacología , Antiinfecciosos/metabolismo , Productos Biológicos/metabolismo , ADN Ribosómico , Pruebas de Sensibilidad Microbiana
2.
Molecules ; 27(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36080381

RESUMEN

Malaria is one of the most important infectious diseases worldwide. The causative of the most severe forms of malaria, Plasmodium falciparum, has developed resistances against all the available antimalarial drugs. In the present study, the phytochemical investigation of the green seaweed Halimeda macroloba has afforded two new compounds 1-2, along with 4 known ones 3-6. The structures of the compounds had been confirmed using 1& 2D-NMR and HRESIMS analyses. Extensive machine-learning-supported virtual-screening suggested cytochrome-C enzyme as a potential target for compound 2. Docking, absolute-binding-free-energy (ΔGbinding) and molecular-dynamics-simulation (MDS) of compound 2 revealed the strong binding interaction of this compound with cytochrome-C. In vitro testing for crude extract and isolated compounds revealed the potential in vitro inhibitory activity of both extract and compound 2 against P. falciparum. The crude extract was able to inhibit the parasite growth with an IC50 value of 1.8 ± 0.35 µg/mL. Compound 2 also showed good inhibitory activity with an IC50 value of 3.2 ± 0.23 µg/mL. Meanwhile, compound 6 showed moderate inhibitory activity with an IC50 value of 19.3 ± 0.51 µg/mL. Accordingly, the scaffold of compound 2 can be considered as a good lead compound for the future development of new antimalarial agents.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Algas Marinas , Antimaláricos/química , Citocromos , Humanos , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Extractos Vegetales/química , Plasmodium falciparum
3.
J Virol ; 93(16)2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31142665

RESUMEN

The human T-cell leukemia virus type 1 (HTLV-1) regulatory proteins Tax and HBZ play indispensable roles in regulating viral and cellular gene expression. BRG1, the ATPase subunit of the SWI/SNF chromatin remodeling complex, has been demonstrated to be essential not only for Tax transactivation but also for viral replication. We sought to investigate the physical interaction between HBZ and BRG1 and to determine the effect of these interactions on Tax-mediated long terminal repeat (LTR) activation. We reveal that HTLV-1 cell lines and adult T-cell leukemia (ATL) cells harbor high levels of BRG1. Using glutathione S-transferase (GST) pulldown and coimmunoprecipitation assays, we have demonstrated physical interactions between BRG1 and HBZ and characterized the protein domains involved. Moreover, we have identified the PBAF signature subunits BAF200 and BAF180 as novel interaction partners of HBZ, suggesting that the PBAF complex may be required for HTLV-1 transcriptional repression by HBZ. Additionally, we found that BRG1 expression translocates HBZ into distinct nuclear foci. We show that HBZ substantially represses HTLV-1 LTR activation by Tax/BRG1. Interestingly, we found that Tax stabilizes the expression of exogenous and endogenous BRG1 and that HBZ reverses this effect. Finally, using a chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assay, we illustrate that HBZ facilitates the downregulation of HTLV-1 transcription by deregulating the recruitment of SWI/SNF complexes to the promoter. Overall, we conclude that SWI/SNF complexes, in addition to other cellular transcription factors, are involved in HBZ-mediated suppression of HTLV-1 viral gene expression.IMPORTANCE The pathogenic potential of HTLV-1 is linked to the indispensable multifaceted functions of the viral regulatory proteins Tax and HBZ, encoded by the sense and antisense viral transcripts, respectively. The interaction between Tax and the SWI/SNF family of chromatin remodeling complexes has been associated with HTLV-1 transcriptional activation. To date, the relationship between the SWI/SNF chromatin remodeling family and HBZ, the only viral protein that is consistently expressed in infected cells and ATL cells, has not been elucidated. Here, we have characterized the biological significance of the SWI/SNF family in regard to viral transcriptional repression by HBZ. This is important because it provides a better understanding of the function and role of HBZ in downregulating viral transcription and, hence, its contribution to viral latency and persistence in vivo, a process that may ultimately lead to the development of ATL.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Infecciones por HTLV-I/virología , Interacciones Huésped-Patógeno , Virus Linfotrópico T Tipo 1 Humano/fisiología , Proteínas de los Retroviridae/metabolismo , Factores de Transcripción/metabolismo , Replicación Viral , ADN Helicasas/química , ADN Helicasas/metabolismo , Regulación Viral de la Expresión Génica , Productos del Gen tax/metabolismo , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Secuencias Repetidas Terminales , Factores de Transcripción/química , Activación Transcripcional
5.
Int J Biol Macromol ; 255: 128025, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37979739

RESUMEN

In the present study, we characterized Bakuchiol (Bak) as a new potent quorum sensing (QS) inhibitor against Pseudomonas aeruginosa biofilm formation. Upon extensive in vitro investigations, Bak was found to suppress the P. aeruginosa biofilm formation (75.5 % inhibition) and its associated virulence factor e.g., pyocyanin and rhamnolipids (% of inhibition = 71.5 % and 66.9 %, respectively). Upon LuxR-type receptors assay, Bak was found to selectively inhibit P. aeruginosa's LasR in a dose-dependent manner. Further in-depth molecular investigations (e.g., sedimentation velocity and thermal shift assays) revealed that Bak destabilized LasR upon binding and disrupted its functioning quaternary structure (i.e., the functioning dimeric form). The subsequent modeling and molecular dynamics (MD) simulations explained in more molecular detail how Bak interacts with LasR and how it can induce its dimeric form disruption. In conclusion, our study identified Bak as a potent and specific LasR antagonist that should be widely used as a chemical probe of QS in P. aeruginosa, offering new insights into LasR antagonism processes. The new findings shed light on the cryptic world of LuxR-type QS in this important opportunistic pathogen.


Asunto(s)
Pseudomonas aeruginosa , Percepción de Quorum , Biopelículas , Pseudomonas/metabolismo , Proteínas Bacterianas/metabolismo , Factores de Transcripción , Transactivadores/metabolismo , Antibacterianos/farmacología
6.
Heliyon ; 10(9): e29909, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38707469

RESUMEN

According to information from the World Health Organization, the world has experienced about 430 million cases of COVID-19, a world-wide health crisis caused by the SARS-CoV-2 virus. This outbreak, originating from China in 2019, has led to nearly 6 million deaths worldwide. As the number of confirmed infections continues to rise, the need for cutting-edge techniques that can detect SARS-CoV-2 infections early and accurately has become more critical. To address this, the Federal Drug Administration (FDA) has issued emergency use authorizations (EUAs) for a wide range of diagnostic tools. These include tests based on detecting nucleic acids and antigen-antibody reactions. The quantitative real-time reverse transcription PCR (qRT-PCR) assay stands out as the gold standard for early virus detection. However, despite its accuracy, qRT-PCR has limitations, such as complex testing protocols and a risk of false negatives, which drive the continuous improvement in nucleic acid and serological testing approaches. The emergence of highly contagious variants of the coronavirus, such as Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529), has increased the need for tests that can specifically identify these mutations. This article explores both nucleic acid-based and antigen-antibody serological assays, assessing the performance of recently approved FDA tests and those documented in scientific research, especially in identifying new coronavirus strains.

7.
BMC Complement Med Ther ; 24(1): 49, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254071

RESUMEN

BACKGROUND: The continuous evolution of drug-resistant influenza viruses highlights the necessity for repurposing naturally-derived and safe phytochemicals with anti-influenza activity as novel broad-spectrum anti-influenza medications. METHODS: In this study, nitrogenous alkaloids were tested for their viral inhibitory activity against influenza A/H1N1 and A/H5N1 viruses. The cytotoxicity of tested alkaloids on MDCK showed a high safety range (CC50 > 200 µg/ml), permitting the screening for their anti-influenza potential. RESULTS: Herein, atropine sulphate, pilocarpine hydrochloride and colchicine displayed anti-H5N1 activities with IC50 values of 2.300, 0.210 and 0.111 µg/ml, respectively. Validation of the IC50 values was further depicted by testing the three highly effective alkaloids, based on their potent IC50 values against seasonal influenza A/H1N1 virus, showing comparable IC50 values of 0.204, 0.637 and 0.326 µg/ml, respectively. Further investigation suggests that colchicine could suppress viral infection by primarily interfering with IAV replication and inhibiting viral adsorption, while atropine sulphate and pilocarpine hydrochloride could directly affect the virus in a cell-free virucidal effect. Interestingly, the in silico molecular docking studies suggest the abilities of atropine, pilocarpine, and colchicine to bind correctly inside the active sites of the neuraminidases of both influenza A/H1N1 and A/H5N1 viruses. The three alkaloids exhibited good binding energies as well as excellent binding modes that were similar to the co-crystallized ligands. On the other hand, consistent with in vitro results, only colchicine could bind correctly against the M2-proton channel of influenza A viruses (IAVs). This might explicate the in vitro antiviral activity of colchicine at the replication stage of the virus replication cycle. CONCLUSION: This study highlighted the anti-influenza efficacy of biologically active alkaloids including colchicine. Therefore, these alkaloids should be further characterized in vivo (preclinical and clinical studies) to be developed as anti-IAV agents.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Humanos , Colchicina/farmacología , Pilocarpina , Gripe Humana/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Estaciones del Año , Fitoquímicos/farmacología , Atropina , Antivirales/farmacología
8.
Vaccines (Basel) ; 11(11)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-38005960

RESUMEN

Despite the panzootic nature of emergent highly pathogenic avian influenza H5Nx viruses in wild migratory birds and domestic poultry, only a limited number of human infections with H5Nx viruses have been identified since its emergence in 1996. Few countries with endemic avian influenza viruses (AIVs) have implemented vaccination as a control strategy, while most of the countries have adopted a culling strategy for the infected flocks. To date, China and Egypt are the two major sites where vaccination has been adopted to control avian influenza H5Nx infections, especially with the widespread circulation of clade 2.3.4.4b H5N1 viruses. This virus is currently circulating among birds and poultry, with occasional spillovers to mammals, including humans. Herein, we will discuss the history of AIVs in Egypt as one of the hotspots for infections and the improper implementation of prophylactic and therapeutic control strategies, leading to continuous flock outbreaks with remarkable virus evolution scenarios. Along with current pre-pandemic preparedness efforts, comprehensive surveillance of H5Nx viruses in wild birds, domestic poultry, and mammals, including humans, in endemic areas is critical to explore the public health risk of the newly emerging immune-evasive or drug-resistant H5Nx variants.

9.
Biomolecules ; 13(11)2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-38002255

RESUMEN

In the present study, norlobaridone (NBD) was isolated from Parmotrema and then evaluated as a new potent quorum sensing (QS) inhibitor against Pseudomonas aeruginosa biofilm development. This phenolic natural product was found to reduce P. aeruginosa biofilm formation (64.6% inhibition) and its related virulence factors, such as pyocyanin and rhamnolipids (% inhibition = 61.1% and 55%, respectively). In vitro assays inhibitory effects against a number of known LuxR-type receptors revealed that NBD was able to specifically block P. aeruginosa's LasR in a dose-dependent manner. Further molecular studies (e.g., sedimentation velocity and thermal shift assays) demonstrated that NBD destabilized LasR upon binding and damaged its functional quaternary structure (i.e., the functional dimeric form). The use of modelling and molecular dynamics (MD) simulations also allowed us to further understand its interaction with LasR, and how this can disrupt its dimeric form. Finally, our findings show that NBD is a powerful and specific LasR antagonist that should be widely employed as a chemical probe in QS of P. aeruginosa, providing new insights into LasR antagonism processes. The new discoveries shed light on the mysterious world of LuxR-type QS in this key opportunistic pathogen.


Asunto(s)
Percepción de Quorum , Factores de Virulencia , Factores de Virulencia/metabolismo , Pseudomonas aeruginosa , Dimerización , Biopelículas , Factores de Transcripción/metabolismo , Transactivadores/metabolismo , Proteínas Bacterianas/metabolismo , Antibacterianos/química
10.
Biomolecules ; 13(12)2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-38136554

RESUMEN

COVID-19, caused by the SARS-CoV-2 virus, manifests with a wide range of clinical symptoms that vary from mild respiratory issues to severe respiratory distress. To effectively manage and predict the outcomes of the disease, it is important to understand the molecular mechanisms underlying its severity. This study focuses on analyzing and comparing the expression patterns of microRNAs (miRNAs) in serum, urine, and nasopharyngeal samples from patients with mild, moderate, and severe COVID-19. The aim is to identify potential associations with disease progression and discover suitable markers for diagnosis and prognosis. Our findings indicate the consistent upregulation of miR-21, miR-146a, and miR-155 in urine, serum, and nasopharyngeal samples from patients with mild COVID-19. In moderate cases, there were more significant changes in miRNA expression compared to mild cases. Specifically, miR-let-7 demonstrated upregulation, while miR-146b exhibited downregulation. The most notable alterations in miRNA expression profiles were observed in severe COVID-19 cases, with a significant upregulation of miR-223. Moreover, our analysis using Receiver-operating characteristic (ROC) curves demonstrated that miR-155, miR-let-7, and miR-223 exhibited high sensitivity and specificity, suggesting their potential as biomarkers for distinguishing COVID-19 patients from healthy individuals. Overall, this comparative analysis revealed distinct patterns in miRNA expression. The overlapping expression patterns of miRNAs in urine, serum, and nasopharyngeal samples suggest their potential utility in discriminating disease status.


Asunto(s)
COVID-19 , MicroARNs , Humanos , COVID-19/diagnóstico , COVID-19/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , MicroARNs/metabolismo , Biomarcadores , Curva ROC
11.
Cureus ; 14(6): e26154, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35891867

RESUMEN

Background Traditional non-steroidal anti-inflammatory drugs (NSAIDs) are recognized to injure the upper gastrointestinal tract (GIT) mucosa. For example, gastric mucosal hemorrhages can be caused by a single dose of 650 mg of aspirin. Nearly 30% to 50% of NSAID users showed endoscopic lesions including subepithelial hemorrhages, erosions, and ulcerations. These lesions are often asymptomatic and are mostly found in the gastric antrum. With the chronic exposure, the mucosa adapts to the aggression of the NSAIDs, whereby these lesions slowly lessen or fade. Aim The aim of this study is to detect the association between NSAIDs and gastrointestinal complications among the general population in the Aseer region, Saudi Arabia. Methodology A record-based retrospective study was conducted targeting people with GIT complications who were 20 years old and above. We reviewed patients' records from the GIT clinic in the Aseer region of Saudi Arabia. We reviewed specifically patients who had GIT complications like gastritis, abdominal pain, GIT bleeding, heartburn, nausea, vomiting, peptic ulcer, and diarrhea. Then we contacted those patients individually to fill out a questionnaire. Participants less than 18 years, those who refused to complete the questionnaire, or any patients with no history of GIT complications were excluded. An online questionnaire was sent to the patients with GIT complications. The questionnaire included participant's personal data, NSAID use, and associated GIT complications. The questionnaire was uploaded online using social media platforms by the researchers and their relatives and friends during the period from March 2012 to May 2022. Results A total of 211 participants with GIT complications completed the study questionnaire. Participant ages ranged from 20-59 years with a mean age of 31.2 ± 12.9 years old. A total of 140 (66.4%) were males and 175 (82.9%) were from urban areas. A total of 156 (73.9%) were non-smokers. A total of 103 (48.8%) participants used NSAIDs. As for complications, the most reported were peptic ulcer (37.9%), GIT bleeding (5.8%), GIT erosions (4.9%), and intestinal obstruction (3.9%) while 59.2% had no complications. Conclusions The current study revealed that nearly one out of every two participants in the Aseer region mainly used NSAIDs as tablets for pain. Regarding high utilization rates, less than half of them developed GIT complications, mainly peptic ulcers.

12.
Pathogens ; 10(5)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069460

RESUMEN

In late December 2019, a novel coronavirus, namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), escaped the animal-human interface and emerged as an ongoing global pandemic with severe flu-like illness, commonly known as coronavirus disease 2019 (COVID-19). In this study, a molecular docking study was carried out for seventeen (17) structural analogues prepared from natural maslinic and oleanolic acids, screened against SARS-CoV-2 main protease. Furthermore, we experimentally validated the virtual data by measuring the half-maximal cytotoxic and inhibitory concentrations of each compound. Interestingly, the chlorinated isoxazole linked maslinic acid (compound 17) showed promising antiviral activity at micromolar non-toxic concentrations. Thoughtfully, we showed that compound 17 mainly impairs the viral replication of SARS-CoV-2. Furthermore, a very promising SAR study for the examined compounds was concluded, which could be used by medicinal chemists in the near future for the design and synthesis of potential anti-SARS-CoV-2 candidates. Our results could be very promising for performing further additional in vitro and in vivo studies on the tested compound (17) before further licensing for COVID-19 treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA