Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266206

RESUMEN

West Nile virus (WNV), like the dengue virus (DENV) and yellow fever virus (YFV), are major arboviruses belonging to the Flavivirus genus. WNV is emerging or endemic in many countries around the world, affecting humans and other vertebrates. Since 1999, it has been considered to be a major public and veterinary health problem, causing diverse pathologies, ranging from a mild febrile state to severe neurological damage and death. WNV is transmitted in a bird-mosquito-bird cycle, and can occasionally infect humans and horses, both highly susceptible to the virus but considered dead-end hosts. Many studies have investigated the molecular determinants of WNV virulence, mainly with the ultimate objective of guiding vaccine development. Several vaccines are used in horses in different parts of the world, but there are no licensed WNV vaccines for humans, suggesting the need for greater understanding of the molecular determinants of virulence and antigenicity in different hosts. Owing to technical and economic considerations, WNV virulence factors have essentially been studied in rodent models, and the results cannot always be transported to mosquito vectors or to avian hosts. In this review, the known molecular determinants of WNV virulence, according to invertebrate (mosquitoes) or vertebrate hosts (mammalian and avian), are presented and discussed. This overview will highlight the differences and similarities found between WNV hosts and models, to provide a foundation for the prediction and anticipation of WNV re-emergence and its risk of global spread.


Asunto(s)
Especificidad del Huésped , Interacciones Huésped-Patógeno , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/genética , Animales , Culicidae/virología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Humanos , Invertebrados , Mosquitos Vectores/virología , Especificidad de la Especie , Vertebrados , Virulencia , Fiebre del Nilo Occidental/transmisión , Virus del Nilo Occidental/patogenicidad
2.
PLoS Pathog ; 9(3): e1003229, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23555246

RESUMEN

Detrimental inflammation of the lungs is a hallmark of severe influenza virus infections. Endothelial cells are the source of cytokine amplification, although mechanisms underlying this process are unknown. Here, using combined pharmacological and gene-deletion approaches, we show that plasminogen controls lung inflammation and pathogenesis of infections with influenza A/PR/8/34, highly pathogenic H5N1 and 2009 pandemic H1N1 viruses. Reduction of virus replication was not responsible for the observed effect. However, pharmacological depletion of fibrinogen, the main target of plasminogen reversed disease resistance of plasminogen-deficient mice or mice treated with an inhibitor of plasminogen-mediated fibrinolysis. Therefore, plasminogen contributes to the deleterious inflammation of the lungs and local fibrin clot formation may be implicated in host defense against influenza virus infections. Our studies suggest that the hemostatic system might be explored for novel treatments against influenza.


Asunto(s)
Antivirales/farmacología , Fibrinolíticos/farmacología , Inflamación/inducido químicamente , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Plasminógeno/farmacología , Neumonía Viral/tratamiento farmacológico , Animales , Femenino , Fibrina/efectos de los fármacos , Tiempo de Lisis del Coágulo de Fibrina , Fibrinógeno/efectos de los fármacos , Fibrinólisis/efectos de los fármacos , Interacciones Huésped-Patógeno , Inflamación/prevención & control , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Orthomyxoviridae/prevención & control , Plasminógeno/deficiencia , Plasminógeno/genética , Neumonía Viral/prevención & control , Replicación Viral/efectos de los fármacos
3.
Nucleic Acids Res ; 41(20): 9218-29, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23945940

RESUMEN

Type IV effectors (T4Es) are proteins produced by pathogenic bacteria to manipulate host cell gene expression and processes, divert the cell machinery for their own profit and circumvent the immune responses. T4Es have been characterized for some bacteria but many remain to be discovered. To help biologists identify putative T4Es from the complete genome of α- and γ-proteobacteria, we developed a Perl-based command line bioinformatics tool called S4TE (searching algorithm for type-IV secretion system effectors). The tool predicts and ranks T4E candidates by using a combination of 13 sequence characteristics, including homology to known effectors, homology to eukaryotic domains, presence of subcellular localization signals or secretion signals, etc. S4TE software is modular, and specific motif searches are run independently before ultimate combination of the outputs to generate a score and sort the strongest T4Es candidates. The user keeps the possibility to adjust various searching parameters such as the weight of each module, the selection threshold or the input databases. The algorithm also provides a GC% and local gene density analysis, which strengthen the selection of T4E candidates. S4TE is a unique predicting tool for T4Es, finding its utility upstream from experimental biology.


Asunto(s)
Algoritmos , Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/genética , Genoma Bacteriano , Proteobacteria/genética , Composición de Base , Análisis por Conglomerados , Genómica , Legionella pneumophila/genética , Programas Informáticos
4.
Eur J Wildl Res ; 61(4): 635-639, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-32214942

RESUMEN

To date, infectious bronchitis virus (IBV) is potentially found in wild birds of different species. This work reports the survey of coronaviruses in wild birds from Madagascar based on the targeting of a conserved genome sequence among different groups of CoVs. Phylogenetic analyses revealed the presence of gammacoronaviruses in different species of Gruiformes, Passeriformes, Ciconiiformes, Anseriformes, and Charadriiformes. Furthermore, some sequences were related to various IBV strains. Aquatic and migratory birds may play an important role in the maintenance and spread of coronaviruses in nature, highlighting their possible contribution in the emergence of new coronavirus diseases in wild and domestic birds.

5.
BMC Vet Res ; 10: 247, 2014 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-25301058

RESUMEN

BACKGROUND: Active surveillance of peste des petits ruminants (PPR) should ease prevention and control of this disease widely present across Africa, Middle East, central and southern Asia. PPR is now present in Turkey at the gateway to the European Union. In Bangladesh, the diagnosis and genotyping of PPR virus (PPRV) may be hampered by inadequate infrastructures and by lack of proper clinical material, which is often not preserved under cold chain up to laboratories. It has been shown previously that Whatman® 3MM filter paper (GE Healthcare, France) preserves the nucleic acid of PPRV for at least 3 months at 32°C. RESULTS: In this study, we demonstrate the performances of filter papers for archiving RNA from local PPRV field isolates for further molecular detection and genotyping of PPRV, at -70°C combined with ambient temperature, for periods up to 16 months. PPR-suspected live animals were sampled and their blood and nasal swabs were applied on filter papers then air dried. Immediately after field sampling, RT-PCR amplifying a 448-bp fragment of the F gene appeared positive for both blood and nasal swabs when animals were in febrile stage and only nasal swabs were detected positive in non-febrile stage. Those tested positive were monitored by RT-PCR up to 10 months by storage at -70°C. At 16 months, using real time RT-PCR adapted to amplify the N gene from filter paper, high viral loads could still be detected (~2 x 10(7) copy numbers), essentially from nasal samples. The material was successfully sequenced and a Bayesian phylogenetic reconstruction achieved adequate resolution to establish temporal relationships within or between the geographical clusters of the PPRV strains. CONCLUSIONS: This clearly reveals the excellent capacity of filter papers to store genetic material that can be sampled using a non-invasive approach.


Asunto(s)
Pruebas con Sangre Seca/veterinaria , Técnicas de Genotipaje/veterinaria , Enfermedades de las Cabras/diagnóstico , Peste de los Pequeños Rumiantes/diagnóstico , Virus de la Peste de los Pequeños Rumiantes/genética , Carga Viral/veterinaria , Animales , Pruebas con Sangre Seca/métodos , Enfermedades de las Cabras/genética , Enfermedades de las Cabras/virología , Cabras/virología , Peste de los Pequeños Rumiantes/genética , Peste de los Pequeños Rumiantes/virología , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria
6.
Pathogens ; 13(2)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38392899

RESUMEN

Eight hunting dogs were visited by a state veterinarian on the island of Tobago, Trinidad and Tobago, West Indies, as owners reported anorexia and paralysis in five of their dogs. The veterinarian observed a combination of clinical signs consistent with tick-borne illness, including fever, anorexia, anaemia, lethargy and paralysis. Blood and ticks were collected from each dog and submitted to a diagnostic laboratory for analysis. Microscopic analysis revealed a mixed infection of intracytoplasmic organisms consistent with Babesia spp. (erythrocyte) and Ehrlichia spp. (monocyte), respectively, from one dog, while a complete blood count indicated a regenerative anaemia (n = 1; 12.5%), non-regenerative anaemia (n = 4; 50%), neutrophilia (n = 3; 37.5%), lymphocytosis (n = 2; 25%), thrombocytopaenia (n = 3; 37.5%) and pancytopaenia (n = 1; 12.5%). DNA isolated from the eight blood samples and 20 ticks (16 Rhipicephalus sanguineus and 4 Amblyomma ovale) were subjected to conventional PCR and next-generation sequencing of the 16S rRNA and 18S rRNA gene for Anaplasma/Ehrlichia and Babesia/Theileria/Hepatozoon, respectively. The DNA of Ehrlichia spp., closely related to Ehrlichia canis, was detected in the blood of three dogs (37.5%), Anaplasma spp., closely related to Anaplasma marginale, in two (25%), Babesia vogeli in one dog (12.5%) and seven ticks (35%) and Hepatozoon canis and Anaplasma spp., in one tick (5%), respectively. These findings highlight the need to test both the vector and host for the presence of tick-borne pathogens when undertaking diagnostic investigations. Further studies are also warranted to elucidate the susceptibility of canids to Anaplasma marginale.

7.
J Virol ; 86(2): 786-95, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22072768

RESUMEN

Viruses are serious threats to human and animal health. Vaccines can prevent viral diseases, but few antiviral treatments are available to control evolving infections. Among new antiviral therapies, RNA interference (RNAi) has been the focus of intensive research. However, along with the development of efficient RNAi-based therapeutics comes the risk of emergence of resistant viruses. In this study, we challenged the in vitro propensity of a morbillivirus (peste des petits ruminants virus), a stable RNA virus, to escape the inhibition conferred by single or multiple small interfering RNAs (siRNAs) against conserved regions of the N gene. Except with the combination of three different siRNAs, the virus systematically escaped RNAi after 3 to 20 consecutive passages. The genetic modifications involved consisted of single or multiple point nucleotide mutations and a deletion of a stretch of six nucleotides, illustrating that this virus has an unusual genomic malleability.


Asunto(s)
Variación Genética , Peste de los Pequeños Rumiantes/virología , Virus de la Peste de los Pequeños Rumiantes/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Chlorocebus aethiops , Inestabilidad Genómica , Humanos , Datos de Secuencia Molecular , Mutación , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/metabolismo , Peste de los Pequeños Rumiantes/tratamiento farmacológico , Virus de la Peste de los Pequeños Rumiantes/fisiología , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/uso terapéutico , Células Vero , Replicación Viral
8.
Med Sci (Paris) ; 29(5): 501-8, 2013 May.
Artículo en Francés | MEDLINE | ID: mdl-23732099

RESUMEN

Human, animal and plant viral diseases have greatly benefited from recent metagenomics developments. Viral metagenomics is a culture-independent approach used to investigate the complete viral genetic populations of a sample. During the last decade, metagenomics concepts and techniques that were first used by ecologists progressively spread into the scientific field of viral pathology. The sample, which was first for ecologists a fraction of ecosystem, became for pathologists an organism that hosts millions of microbes and viruses. This new approach, providing without a priori high resolution qualitative and quantitative data on the viral diversity, is now revolutionizing the way pathologists decipher viral diseases. This review describes the very last improvements of the high throughput next generation sequencing methods and discusses the applications of viral metagenomics in viral pathology, including discovery of novel viruses, viral surveillance and diagnostic, large-scale molecular epidemiology, and viral evolution.


Asunto(s)
Metagenómica , Virosis/virología , Virus/genética , Humanos , Virosis/diagnóstico , Virosis/epidemiología
9.
Viruses ; 15(5)2023 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-37243180

RESUMEN

West Nile virus (WNV) is amplified in an enzootic cycle involving birds as amplifying hosts. Because they do not develop high levels of viremia, humans and horses are considered to be dead-end hosts. Mosquitoes, especially from the Culex genus, are vectors responsible for transmission between hosts. Consequently, understanding WNV epidemiology and infection requires comparative and integrated analyses in bird, mammalian, and insect hosts. So far, markers of WNV virulence have mainly been determined in mammalian model organisms (essentially mice), while data in avian models are still missing. WNV Israel 1998 (IS98) is a highly virulent strain that is closely genetically related to the strain introduced into North America in 1999, NY99 (genomic sequence homology > 99%). The latter probably entered the continent at New York City, generating the most impactful WNV outbreak ever documented in wild birds, horses, and humans. In contrast, the WNV Italy 2008 strain (IT08) induced only limited mortality in birds and mammals in Europe during the summer of 2008. To test whether genetic polymorphism between IS98 and IT08 could account for differences in disease spread and burden, we generated chimeric viruses between IS98 and IT08, focusing on the 3' end of the genome (NS4A, NS4B, NS5, and 3'UTR regions) where most of the non-synonymous mutations were detected. In vitro and in vivo comparative analyses of parental and chimeric viruses demonstrated a role for NS4A/NS4B/5'NS5 in the decreased virulence of IT08 in SPF chickens, possibly due to the NS4B-E249D mutation. Additionally, significant differences between the highly virulent strain IS98 and the other three viruses were observed in mice, implying the existence of additional molecular determinants of virulence in mammals, such as the amino acid changes NS5-V258A, NS5-N280K, NS5-A372V, and NS5-R422K. As previously shown, our work also suggests that genetic determinants of WNV virulence can be host-dependent.


Asunto(s)
Fiebre del Nilo Occidental , Virus del Nilo Occidental , Humanos , Animales , Caballos , Ratones , Fiebre del Nilo Occidental/epidemiología , Regiones no Traducidas 3' , Virulencia , Pollos , Mosquitos Vectores , Mamíferos
10.
Front Microbiol ; 14: 1324069, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38298539

RESUMEN

West Nile virus (WNV) is a single-stranded positive-sense RNA virus (+ssRNA) belonging to the genus Orthoflavivirus. Its enzootic cycle involves mosquito vectors, mainly Culex, and wild birds as reservoir hosts, while mammals, such as humans and equids, are incidental dead-end hosts. It was first discovered in 1934 in Uganda, and since 1999 has been responsible for frequent outbreaks in humans, horses and wild birds, mostly in America and in Europe. Virus spread, as well as outbreak severity, can be influenced by many ecological factors, such as reservoir host availability, biodiversity, movements and competence, mosquito abundance, distribution and vector competence, by environmental factors such as temperature, land use and precipitation, as well as by virus genetic factors influencing virulence or transmission. Former studies have investigated WNV factors of virulence, but few have compared viral genetic determinants of pathogenicity in different host species, and even fewer have considered the genetic drivers of virus invasiveness and excretion in Culex vector. In this study, we characterized WNV genetic factors implicated in the difference in virulence observed in two lineage 1 WNV strains from the Mediterranean Basin, the first isolated during a significant outbreak reported in Israel in 1998, and the second from a milder outbreak in Italy in 2008. We used an innovative and powerful reverse genetic tool, e.g., ISA (infectious subgenomic amplicons) to generate chimeras between Israel 1998 and Italy 2008 strains, focusing on non-structural (NS) proteins and the 3'UTR non-coding region. We analyzed the replication of these chimeras and their progenitors in mammals, in BALB/cByJ mice, and vector competence in Culex (Cx.) pipiens mosquitoes. Results obtained in BALB/cByJ mice suggest a role of the NS2B/NS3/NS4B/NS5 genomic region in viral attenuation in mammals, while NS4B/NS5/3'UTR regions are important in Cx. pipiens infection and possibly in vector competence.

12.
Emerg Infect Dis ; 18(6): 969-71, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22608405

RESUMEN

As further confirmation of a first human case of Rift Valley fever in 2007 in Comoros, we isolated Rift Valley fever virus in suspected human cases. These viruses are genetically closely linked to the 2006-2007 isolates from Kenya.


Asunto(s)
Genoma Viral , Fiebre del Valle del Rift/virología , Virus de la Fiebre del Valle del Rift/genética , Teorema de Bayes , Comoras , Humanos , Funciones de Verosimilitud , Datos de Secuencia Molecular , Filogenia , Virus de la Fiebre del Valle del Rift/aislamiento & purificación , Análisis de Secuencia de ADN
13.
J Gen Virol ; 93(Pt 7): 1456-1464, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22513390

RESUMEN

Currently, there are no worldwide licensed vaccines for Rift Valley fever (RVF) that are both safe and effective. Development and evaluation of vaccines, diagnostics and treatments depend on the availability of appropriate animal models. Animal models are also necessary to understand the basic pathobiology of infection. Here, we report the use of an inbred MBT/Pas mouse model that consistently reproduces RVF disease and serves our purpose for testing the efficacy of vaccine candidates; an attenuated Rift Valley fever virus (RVFV) and a recombinant RVFV-capripoxvirus. We show that this model is relevant for vaccine testing.


Asunto(s)
Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Fiebre del Valle del Rift/inmunología , Fiebre del Valle del Rift/prevención & control , Virus de la Fiebre del Valle del Rift/inmunología , Vacunación/métodos , Vacunas Virales/inmunología , Animales , Femenino , Humanos , Ratones , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología , Vacunas Virales/administración & dosificación
14.
Emerg Infect Dis ; 17(7): 1223-31, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21762576

RESUMEN

Interest in peste des petits ruminants virus (PPRV) has been stimulated by recent changes in its host and geographic distribution. For this study, biological specimens were collected from camels, sheep, and goats clinically suspected of having PPRV infection in Sudan during 2000-2009 and from sheep soon after the first reported outbreaks in Morocco in 2008. Reverse transcription PCR analysis confirmed the wide distribution of PPRV throughout Sudan and spread of the virus in Morocco. Molecular typing of 32 samples positive for PPRV provided strong evidence of the introduction and broad spread of Asian lineage IV. This lineage was defined further by 2 subclusters; one consisted of camel and goat isolates and some of the sheep isolates, while the other contained only sheep isolates, a finding with suggests a genetic bias according to the host. This study provides evidence of the recent spread of PPRV lineage IV in Africa.


Asunto(s)
Enfermedades de las Cabras/virología , Peste de los Pequeños Rumiantes/veterinaria , Virus de la Peste de los Pequeños Rumiantes , Enfermedades de las Ovejas/virología , Animales , Antígenos Virales/análisis , Camelus , Análisis por Conglomerados , Brotes de Enfermedades , Ensayo de Inmunoadsorción Enzimática , Enfermedades de las Cabras/epidemiología , Enfermedades de las Cabras/genética , Cabras , Estudios Longitudinales , Tipificación Molecular , Marruecos , Peste de los Pequeños Rumiantes/epidemiología , Peste de los Pequeños Rumiantes/virología , Virus de la Peste de los Pequeños Rumiantes/genética , Virus de la Peste de los Pequeños Rumiantes/aislamiento & purificación , Virus de la Peste de los Pequeños Rumiantes/patogenicidad , Filogenia , Filogeografía , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ovinos , Enfermedades de las Ovejas/epidemiología , Enfermedades de las Ovejas/genética , Sudán
15.
Mol Ecol Resour ; 21(6): 1788-1807, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33713395

RESUMEN

Our understanding of the viral communities associated to animals has not yet reached the level attained on the bacteriome. This situation is due to, among others, technical challenges in adapting metagenomics using high-throughput sequencing to the study of RNA viromes in animals. Although important developments have been achieved in most steps of viral metagenomics, there is yet a key step that has received little attention: the library preparation. This situation differs from bacteriome studies in which developments in library preparation have largely contributed to the democratisation of metagenomics. Here, we present a library preparation optimized for metagenomics of RNA viruses from insect vectors of viral diseases. The library design allows a simple PCR-based preparation, such as those routinely used in bacterial metabarcoding, that is adapted to shotgun sequencing as required in viral metagenomics. We first optimized our library preparation using mock viral communities and then validated a full metagenomic approach incorporating our preparation in two pilot studies with field-caught insect vectors; one including a comparison with a published metagenomic protocol. Our approach provided a fold increase in virus-like sequences compared to other studies, and nearly-full genomes from new virus species. Moreover, our results suggested conserved trends in virome composition within a population of a mosquito species. Finally, the sensitivity of our approach was compared to a commercial diagnostic PCR for the detection of an arbovirus in field-caught insect vectors. Our approach could facilitate studies on viral communities from animals and the democratization of metagenomics in community ecology of viruses.


Asunto(s)
Biblioteca de Genes , Metagenómica , Virus ARN , Viroma , Animales , Genoma Viral , Metagenoma , Virus ARN/genética
16.
Trop Anim Health Prod ; 42(5): 807-9, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19911294

RESUMEN

This study reports the first evidence of circulation of avian influenza viruses (AIV) in domestic poultry in Mali. In the Mopti region, where AIV have already been isolated in migratory water birds, we sampled 223 backyard domestic birds potentially in contact with wild birds and found that 3.6% had tracheal or cloacal swabs positive by real-time reverse transcription PCR (rRT-PCR) for type A influenza viruses (IVA) and that 13.7% had sera positive by commercial ELISA test detecting antibodies against IVA. None of the birds positive by rRT-PCR for IVA was positive by rRT-PCR for H5 and H7 subtypes, and none showed any clinical signs therefore indicating the circulation of low pathogenic avian influenza. Unfortunately, no virus isolation was possible. Further studies are needed to assess the temporal evolution of AIV circulation in the Mopti region and its possible correlation with the presence of wild birds.


Asunto(s)
Patos , Galliformes , Gripe Aviar/epidemiología , Crianza de Animales Domésticos , Animales , Femenino , Masculino , Malí/epidemiología
17.
Pathogens ; 9(3)2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32121571

RESUMEN

Despite the high burden of vector-borne disease in (sub)tropical areas, few information are available regarding the diversity of tick and tick-borne pathogens circulating in the Caribbean. Management and control of vector-borne disease require actual epidemiological data to better assess and anticipate the risk of (re)emergence of tick-borne diseases in the region. To simplify and reduce the costs of such large-scale surveys, we implemented a high-throughput microfluidic real-time PCR system suitable for the screening of the main bacterial and parasitic genera involved in tick-borne disease and potentially circulating in the area. We used the new screening tool to perform an exploratory epidemiological study on 132 adult specimens of Amblyomma variegatum and 446 of Rhipicephalus microplus collected in Guadeloupe and Martinique. Not only the system was able to detect the main pathogens of the area-Ehrlichia ruminantium, Rickettsia africae, Anaplasma marginale, Babesia bigemina and Babesia bovis-but the system also provided evidence of unsuspected microorganisms in Caribbean ticks, belonging to the Anaplasma, Ehrlichia, Borrelia and Leishmania genera. Our study demonstrated how high-throughput microfluidic real-time PCR technology can assist large-scale epidemiological studies, providing a rapid overview of tick-borne pathogen and microorganism diversity, and opening up new research perspectives for the epidemiology of tick-borne pathogens.

18.
Virus Res ; 286: 198035, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32461190

RESUMEN

Comprehensive pathogenesis studies on Peste des Petits Ruminants virus (PPRV) have been delayed so far by the absence of a small animal model reproducing the disease or an in vitro biological system revealing virulence differences. In this study, a mouse 10T1/2 cell line has been identified as presenting different susceptibility to virulent and attenuated PPRV strains. As evidenced by immunofluorescence test and RT-PCR, both virulent and attenuated PPR viruses penetrated and initiated the replication cycle in 10T1/2 cells, independently of the presence of the SLAM goat receptor. However, only virulent strains successfully completed their replication cycle while the vaccine strains did not. Since 10T1/2 cells are interferon-producing cells, the role of the type I interferon (type I IFN) response on this differentiated replication between virulent and attenuated strains was verified by stimulation or repression. Modulation of the type I IFN response did not improve the replication of the vaccine strains, indicating that other cell factor(s) not yet established may hinder the replication of attenuated PPRV in 10T1/2. This 10T1/2 cell line can be proposed as a new in vitro tool for PPRV-host interaction and virulence studies.


Asunto(s)
Línea Celular , Interferón Tipo I/inmunología , Peste de los Pequeños Rumiantes/virología , Virus de la Peste de los Pequeños Rumiantes/patogenicidad , Animales , Chlorocebus aethiops , Técnica del Anticuerpo Fluorescente , Cabras , Ratones , Virus de la Peste de los Pequeños Rumiantes/genética , Células Vero , Virulencia , Replicación Viral
19.
Front Microbiol ; 11: 1524, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32754130

RESUMEN

Limited data are available on the contribution of wildlife to the spread of antibacterial resistance. We determined the prevalence of resistance to antibiotics in Escherichia coli isolates collected from wild animals in 2013 and 2014 and the genetic basis for resistance to third-generation cephalosporin in Guadeloupe. We recovered 52 antibiotic-resistant (AR) E. coli strains from 48 of the 884 (5.4%) wild animals tested (46 iguanas, 181 birds, 289 anoles, and 368 rodents at 163 sampling sites). Rodents had higher rates of carriage (n = 38, 10.3%) than reptiles and birds (2.4% and 1.1%, respectively, p < 0.001). A significant association (p < 0.001) was found between the degree of anthropization and the frequency of AR E. coli carriage for all species. The carriage rate of ciprofloxacin- and cefotaxime-resistant isolates was 0.7% (6/884) and 1.5% (13/884), respectively. Most (65.4%) AR E. coli were multi-drug resistant, and the prevalence of extended-spectrum beta-lactamase (ESBL)-producing E. coli was low (n = 7, 0.8%) in all species. Eight ESBL-producing E. coli were recovered, two genetically unrelated isolates being found in one bird. These isolates and 20 human invasive ESBL E. coli isolates collected in Guadeloupe during the same period were investigated by whole genome sequencing. bla CTX-M-1 was the only ESBL gene shared by three animal classes (humans, n = 2; birds, n = 2; rodents, n = 2). The bla CTX-M-1 gene and most of the antimicrobial resistance genes were present in a large conjugative IncI1 plasmid that was highly similar (>99% nucleotide identity) to ESBL-carrying plasmids found in several countries in Europe and in Australia. Although the prevalence of ESBL-producing E. coli isolates was very low in wild animals, it is of concern that the well-conserved IncI1 plasmid-carrying bla CTX-M-1 is widespread and occurs in various E. coli strains from animals and humans.

20.
Viruses ; 12(2)2020 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-31991915

RESUMEN

Ticks transmit a wide variety of pathogens including bacteria, parasites and viruses. Over the last decade, numerous novel viruses have been described in arthropods, including ticks, and their characterization has provided new insights into RNA virus diversity and evolution. However, little is known about their ability to infect vertebrates. As very few studies have described the diversity of viruses present in ticks from the Caribbean, we implemented an RNA-sequencing approach on Amblyomma variegatum and Rhipicephalus microplus ticks collected from cattle in Guadeloupe and Martinique. Among the viral communities infecting Caribbean ticks, we selected four viruses belonging to the Chuviridae, Phenuiviridae and Flaviviridae families for further characterization and designing antibody screening tests. While viral prevalence in individual tick samples revealed high infection rates, suggesting a high level of exposure of Caribbean cattle to these viruses, no seropositive animals were detected. These results suggest that the Chuviridae- and Phenuiviridae-related viruses identified in the present study are more likely tick endosymbionts, raising the question of the epidemiological significance of their occurrence in ticks, especially regarding their possible impact on tick biology and vector capacity. The characterization of these viruses might open the door to new ways of preventing and controlling tick-borne diseases.


Asunto(s)
Enfermedades de los Bovinos , Flaviviridae/aislamiento & purificación , Ixodidae/virología , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , Rhipicephalus/virología , Infestaciones por Garrapatas/veterinaria , Animales , Anticuerpos Antivirales/sangre , Bovinos/inmunología , Enfermedades de los Bovinos/inmunología , Enfermedades de los Bovinos/parasitología , Susceptibilidad a Enfermedades , Flaviviridae/genética , Flaviviridae/inmunología , Genoma Viral , Martinica , Filogenia , Virus ARN/genética , Virus ARN/inmunología , ARN Viral/análisis , ARN Viral/genética , Estudios Seroepidemiológicos , Infestaciones por Garrapatas/inmunología , Indias Occidentales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA