Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Immunity ; 57(2): 319-332.e6, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38295798

RESUMEN

Tuft cells in mucosal tissues are key regulators of type 2 immunity. Here, we examined the impact of the microbiota on tuft cell biology in the intestine. Succinate induction of tuft cells and type 2 innate lymphoid cells was elevated with loss of gut microbiota. Colonization with butyrate-producing bacteria or treatment with butyrate suppressed this effect and reduced intestinal histone deacetylase activity. Epithelial-intrinsic deletion of the epigenetic-modifying enzyme histone deacetylase 3 (HDAC3) inhibited tuft cell expansion in vivo and impaired type 2 immune responses during helminth infection. Butyrate restricted stem cell differentiation into tuft cells, and inhibition of HDAC3 in adult mice and human intestinal organoids blocked tuft cell expansion. Collectively, these data define a HDAC3 mechanism in stem cells for tuft cell differentiation that is dampened by a commensal metabolite, revealing a pathway whereby the microbiota calibrate intestinal type 2 immunity.


Asunto(s)
Mucosa Intestinal , Microbiota , Adulto , Ratones , Humanos , Animales , Células en Penacho , Butiratos/farmacología , Butiratos/metabolismo , Inmunidad Innata , Linfocitos/metabolismo , Intestinos , Histona Desacetilasas/metabolismo , Diferenciación Celular
2.
Immunity ; 55(12): 2222-2224, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36516815

RESUMEN

Cellular dynamics that influence mucosal healing are not well understood. In this issue of Immunity, Frede, Czarnewski, Monasterio et al. find that B cells accumulate in the colon following intestinal injury. These B cells impair epithelial repair by hindering local stromal-epithelial interactions.


Asunto(s)
Intención , Mucosa Intestinal , Colon , Células Epiteliales
3.
Immunity ; 52(2): 275-294.e9, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32075728

RESUMEN

Type 3 innate lymphoid cells (ILC3s) are critical for lung defense against bacterial pneumonia in the neonatal period, but the signals that guide pulmonary ILC3 development remain unclear. Here, we demonstrated that pulmonary ILC3s descended from ILC precursors that populated a niche defined by fibroblasts in the developing lung. Alveolar fibroblasts produced insulin-like growth factor 1 (IGF1), which instructed expansion and maturation of pulmonary ILC precursors. Conditional ablation of IGF1 in alveolar fibroblasts or deletion of the IGF-1 receptor from ILC precursors interrupted ILC3 biogenesis and rendered newborn mice susceptible to pneumonia. Premature infants with bronchopulmonary dysplasia, characterized by interrupted postnatal alveolar development and increased morbidity to respiratory infections, had reduced IGF1 concentrations and pulmonary ILC3 numbers. These findings indicate that the newborn period is a critical window in pulmonary immunity development, and disrupted lung development in prematurely born infants may have enduring effects on host resistance to respiratory infections.


Asunto(s)
Inmunidad Innata , Factor I del Crecimiento Similar a la Insulina/metabolismo , Pulmón/inmunología , Linfocitos/citología , Células Epiteliales Alveolares/metabolismo , Animales , Animales Recién Nacidos , Displasia Broncopulmonar/inmunología , Diferenciación Celular , Proliferación Celular , Susceptibilidad a Enfermedades/inmunología , Humanos , Recién Nacido , Recien Nacido Prematuro , Factor I del Crecimiento Similar a la Insulina/deficiencia , Interleucinas/metabolismo , Pulmón/citología , Pulmón/crecimiento & desarrollo , Linfocitos/metabolismo , Ratones , Neumonía/inmunología , Proteína de la Leucemia Promielocítica con Dedos de Zinc/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal , Interleucina-22
4.
Nat Immunol ; 16(1): 27-35, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25521682

RESUMEN

The epithelial surfaces of the lungs are in direct contact with the environment and are subjected to dynamic physical forces as airway tubes and alveoli are stretched and compressed during ventilation. Mucociliary clearance in conducting airways, reduction of surface tension in the alveoli, and maintenance of near sterility have been accommodated by the evolution of a multi-tiered innate host-defense system. The biophysical nature of pulmonary host defenses are integrated with the ability of respiratory epithelial cells to respond to and 'instruct' the professional immune system to protect the lungs from infection and injury.


Asunto(s)
Inmunidad Innata/inmunología , Pulmón/inmunología , Mucosa Respiratoria/inmunología , Animales , Homeostasis/inmunología , Humanos , Pulmón/citología , Mucinas/inmunología , Mucosa Respiratoria/citología , Transducción de Señal/inmunología
5.
Nature ; 586(7827): 108-112, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32731255

RESUMEN

The coevolution of mammalian hosts and their beneficial commensal microbes has led to development of symbiotic host-microbiota relationships1. Epigenetic machinery permits mammalian cells to integrate environmental signals2; however, how these pathways are fine-tuned by diverse cues from commensal bacteria is not well understood. Here we reveal a highly selective pathway through which microbiota-derived inositol phosphate regulates histone deacetylase 3 (HDAC3) activity in the intestine. Despite the abundant presence of HDAC inhibitors such as butyrate in the intestine, we found that HDAC3 activity was sharply increased in intestinal epithelial cells of microbiota-replete mice compared with germ-free mice. This divergence was reconciled by the finding that commensal bacteria, including Escherichia coli, stimulated HDAC activity through metabolism of phytate and production of inositol-1,4,5-trisphosphate (InsP3). Both intestinal exposure to InsP3 and phytate ingestion promoted recovery following intestinal damage. Of note, InsP3 also induced growth of intestinal organoids derived from human tissue, stimulated HDAC3-dependent proliferation and countered butyrate inhibition of colonic growth. Collectively, these results show that InsP3 is a microbiota-derived metabolite that activates a mammalian histone deacetylase to promote epithelial repair. Thus, HDAC3 represents a convergent epigenetic sensor of distinct metabolites that calibrates host responses to diverse microbial signals.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Histona Desacetilasas/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Intestinos/enzimología , Intestinos/microbiología , Ácido Fítico/metabolismo , Animales , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/enzimología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Intestinos/citología , Intestinos/patología , Ratones , Ratones Endogámicos C57BL , Organoides/enzimología , Organoides/metabolismo , Organoides/patología , Simbiosis
7.
Pediatr Res ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39289593

RESUMEN

Epigenetics is the study of changes in gene expression, without a change in the DNA sequence that are potentially heritable. Epigenetic mechanisms such as DNA methylation, histone modifications, and small non-coding RNA (sncRNA) changes have been studied in various childhood disorders. Causal links to maternal health and toxin exposures can introduce epigenetic modifications to the fetal DNA, which can be detected in the cord blood. Cord blood epigenetic modifications provide evidence of in-utero stressors and immediate postnatal changes, which can impact both short and long-term outcomes in children. The mechanisms of these epigenetic changes can be leveraged for prevention, early detection, and intervention, and to discover novel therapeutic modalities in childhood diseases. We report a scoping review of early life epigenetics, the influence of maternal health, maternal toxin, and drug exposures on the fetus, and its impact on perinatal, neonatal, and childhood outcomes. IMPACT STATEMENT: Epigenetic changes such as DNA methylation, histone modification, and non-coding RNA have been implicated in the pathophysiology of various disease processes. The fundamental changes to an offspring's epigenome can begin in utero, impacting the immediate postnatal period, childhood, adolescence, and adulthood. This scoping review summarizes current literature on the impact of early life epigenetics, especially DNA methylation on childhood health outcomes.

8.
Gastroenterology ; 163(5): 1377-1390.e11, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35934064

RESUMEN

BACKGROUND & AIMS: The circadian clock orchestrates ∼24-hour oscillations of gastrointestinal epithelial structure and function that drive diurnal rhythms in gut microbiota. Here, we use experimental and computational approaches in intestinal organoids to reveal reciprocal effects of gut microbial metabolites on epithelial timekeeping by an epigenetic mechanism. METHODS: We cultured enteroids in media supplemented with sterile supernatants from the altered Schaedler Flora (ASF), a defined murine microbiota. Circadian oscillations of bioluminescent PER2 and Bmal1 were measured in the presence or absence of individual ASF supernatants. Separately, we applied machine learning to ASF metabolomics to identify phase-shifting metabolites. RESULTS: Sterile filtrates from 3 of 7 ASF species (ASF360 Lactobacillus intestinalis, ASF361 Ligilactobacillus murinus, and ASF502 Clostridium species) induced minimal alterations in circadian rhythms, whereas filtrates from 4 ASF species (ASF356 Clostridium species, ASF492 Eubacterium plexicaudatum, ASF500 Pseudoflavonifactor species, and ASF519 Parabacteroides goldsteinii) induced profound, concentration-dependent phase shifts. Random forest classification identified short-chain fatty acid (SCFA) (butyrate, propionate, acetate, and isovalerate) production as a discriminating feature of ASF "shifters." Experiments with SCFAs confirmed machine learning predictions, with a median phase shift of 6.2 hours in murine enteroids. Pharmacologic or botanical histone deacetylase (HDAC) inhibitors yielded similar findings. Further, mithramycin A, an inhibitor of HDAC inhibition, reduced SCFA-induced phase shifts by 20% (P < .05) and conditional knockout of HDAC3 in enteroids abrogated butyrate effects on Per2 expression. Key findings were reproducible in human Bmal1-luciferase enteroids, colonoids, and Per2-luciferase Caco-2 cells. CONCLUSIONS: Gut microbe-generated SCFAs entrain intestinal epithelial circadian rhythms by an HDACi-dependent mechanism, with critical implications for understanding microbial and circadian network regulation of intestinal epithelial homeostasis.


Asunto(s)
Ritmo Circadiano , Microbioma Gastrointestinal , Humanos , Ratones , Animales , Ritmo Circadiano/fisiología , Microbioma Gastrointestinal/fisiología , Histona Desacetilasas , Células CACO-2 , Factores de Transcripción ARNTL , Propionatos , Ácidos Grasos Volátiles/metabolismo , Butiratos , Inhibidores de Histona Desacetilasas/farmacología , Luciferasas
9.
Nat Immunol ; 12(11): 1045-54, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21946417

RESUMEN

Innate lymphoid cells (ILCs), a heterogeneous cell population, are critical in orchestrating immunity and inflammation in the intestine, but whether ILCs influence immune responses or tissue homeostasis at other mucosal sites remains poorly characterized. Here we identify a population of lung-resident ILCs in mice and humans that expressed the alloantigen Thy-1 (CD90), interleukin 2 (IL-2) receptor a-chain (CD25), IL-7 receptor a-chain (CD127) and the IL-33 receptor subunit T1-ST2. Notably, mouse ILCs accumulated in the lung after infection with influenza virus, and depletion of ILCs resulted in loss of airway epithelial integrity, diminished lung function and impaired airway remodeling. These defects were restored by administration of the lung ILC product amphiregulin. Collectively, our results demonstrate a critical role for lung ILCs in restoring airway epithelial integrity and tissue homeostasis after infection with influenza virus.


Asunto(s)
Homeostasis , Inmunidad Innata , Gripe Humana/inmunología , Pulmón/metabolismo , Infecciones por Orthomyxoviridae/inmunología , Orthomyxoviridae/inmunología , Mucosa Respiratoria/metabolismo , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Remodelación de las Vías Aéreas (Respiratorias)/inmunología , Anfirregulina , Animales , Antígenos CD/biosíntesis , Células Cultivadas , Familia de Proteínas EGF , Glicoproteínas/farmacología , Homeostasis/inmunología , Humanos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Interleucina-33 , Interleucinas/metabolismo , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Ratones , Ratones Endogámicos C57BL , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/patología , Mucosa Respiratoria/virología , Cicatrización de Heridas
10.
Genes Immun ; 22(5-6): 237-246, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33824498

RESUMEN

The gastrointestinal tract harbors trillions of microbial species, collectively termed the microbiota, which establish a symbiotic relationship with the host. Decades of research have emphasized the necessity of microbial signals in the development, maturation, and function of host physiology. However, changes in the composition or containment of the microbiota have been linked to the development of several chronic inflammatory diseases, including inflammatory bowel diseases. Intestinal epithelial cells (IECs) are in constant contact with the microbiota and are critical for maintaining intestinal homeostasis. Signals from the microbiota are directly sensed by IECs and influence intestinal health by calibrating immune cell responses and fortifying intestinal barrier function. IECs detect commensal microbes through engagement of common pattern recognition receptors or by sensing the production of microbial-derived metabolites. Deficiencies in these microbial-detecting pathways in IECs leads to impaired epithelial barrier function and altered intestinal homeostasis. This Review aims to highlight the pathways by which IECs sense microbiota-derived signals and the necessity of these detection pathways in maintaining epithelial barrier integrity.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Microbiota , Homeostasis , Humanos , Mucosa Intestinal , Intestinos
11.
Immunity ; 37(1): 158-70, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22705104

RESUMEN

Signals from commensal bacteria can influence immune cell development and susceptibility to infectious or inflammatory diseases. However, the mechanisms by which commensal bacteria regulate protective immunity after exposure to systemic pathogens remain poorly understood. Here, we demonstrate that antibiotic-treated (ABX) mice exhibit impaired innate and adaptive antiviral immune responses and substantially delayed viral clearance after exposure to systemic LCMV or mucosal influenza virus. Furthermore, ABX mice exhibited severe bronchiole epithelial degeneration and increased host mortality after influenza virus infection. Genome-wide transcriptional profiling of macrophages isolated from ABX mice revealed decreased expression of genes associated with antiviral immunity. Moreover, macrophages from ABX mice exhibited defective responses to type I and type II IFNs and impaired capacity to limit viral replication. Collectively, these data indicate that commensal-derived signals provide tonic immune stimulation that establishes the activation threshold of the innate immune system required for optimal antiviral immunity.


Asunto(s)
Bacterias/inmunología , Inmunidad Innata , Virus/inmunología , Inmunidad Adaptativa , Animales , Antibacterianos/farmacología , Infecciones por Arenaviridae/genética , Infecciones por Arenaviridae/inmunología , Bacterias/efectos de los fármacos , Susceptibilidad a Enfermedades/inmunología , Interferones/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/inmunología
12.
J Immunol ; 202(2): 598-607, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30530480

RESUMEN

Regulation of the intestinal mucus layer by goblet cells is important for preventing inflammation and controlling infection. IL-33, a cytokine upregulated in inflammatory bowel disease and helminth infection, induces intestinal goblet cells, but the mechanism remains unclear. Enteroids are three-dimensional structures of primary small intestinal epithelial cells that contain all differentiated intestinal epithelial cell types. We developed an enteroid-immune cell coculture model to determine the mechanism through which IL-33 affects intestinal goblet cell differentiation. We report that IL-33 does not directly induce goblet cell differentiation in murine enteroids; however, IL-13, a cytokine induced by IL-33, markedly induces goblet cells and gene expression consistent with goblet cell differentiation. When enteroids are cocultured with CD90+ mesenteric lymph node cells from IL-33-treated mice, IL-33 then induces IL-13 secretion by group 2 innate lymphoid cells and enteroid gene expression consistent with goblet cell differentiation. In cocultures, IL-33-induced Muc2 expression is dependent on enteroid Il4ra expression, demonstrating a requirement for IL-13 signaling in epithelial cells. In vivo, IL-33-induced intestinal goblet cell hyperplasia is dependent on IL-13. These studies demonstrate that IL-33 induces intestinal goblet cell differentiation not through direct action on epithelial cells but indirectly through IL-13 production by goup 2 innate lymphoid cells.


Asunto(s)
Diferenciación Celular , Células Caliciformes/inmunología , Inmunidad Innata , Interleucina-13/inmunología , Interleucina-33/inmunología , Linfocitos/inmunología , Animales , Técnicas de Cocultivo , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Mucina 2/genética , Mucina 2/inmunología , Receptores de Superficie Celular/genética , Transducción de Señal
13.
Gastroenterology ; 155(2): 501-513, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29689264

RESUMEN

BACKGROUND & AIMS: Intestinal microbiota modulate metabolism and associate closely with epithelial cells in the intestine. In intestinal epithelial cells (IECs), histone deacetylase 3 (HDAC3) integrates microbiota-derived signals to control intestinal homeostasis. We investigated whether HDAC3 in IECs regulates metabolism and the development of obesity in mice. METHODS: Adult C57BL/6 (control) mice and mice with constitutive or inducible IEC-specific disruption of Hdac3 (HDAC3ΔIEC mice) were placed on a standard chow or high-fat diet (HFD, 60% kcal from fat). We measured body composition, weight, glucose tolerance, and energy expenditure. IECs were isolated from small intestine and gene expression, and lipid levels were analyzed. HDAC3 levels were determined in 43 pediatric patient ileal biopsy samples and compared with body weight. RESULTS: Control mice fed an HFD gained weight, became obese, and had reduced glucose tolerance with increased serum insulin, whereas HFD-fed HDAC3ΔIEC mice did not develop obesity. Serum levels of triglycerides were reduced in HDAC3ΔIEC mice, and these mice had less liver fat and smaller adipocytes, compared with HFD-fed control mice. HDAC3ΔIEC mice had similar food intake and activity as control mice, but higher energy expenditure because of increased catabolism. IECs from HDAC3ΔIEC mice had altered expression levels of genes that regulate metabolism in response to the microbiota (such as Chka, Mttp, Apoa1, and Pck1) and accumulated triglycerides compared with IECs from control mice. The microbiota-derived short-chain fatty acid butyrate was decreased in obese mice. Butyrate significantly reduced the activity of HDAC3 and increased Pck1 expression in only control IECs. Administration of butyrate to control mice with diet-induced obesity, but not HDAC3ΔIEC mice, led to significant weight loss. Disruption of HDAC3 in IECs of mice after they became obese led to weight loss and improved metabolic profile. Levels of HDAC3 in intestinal biopsy samples correlated with patient weight. CONCLUSIONS: We found that epithelial HDAC3 promotes development of diet-induced obesity in studies of mice and that butyrate reduces activity of HDAC3 in IECs to prevent diet-induced obesity. This pathway might be manipulated to prevent or reduce obesity-associated disease.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Células Epiteliales/metabolismo , Microbioma Gastrointestinal/fisiología , Histona Desacetilasas/metabolismo , Obesidad/patología , Animales , Biopsia , Peso Corporal/fisiología , Niño , Modelos Animales de Enfermedad , Metabolismo Energético , Femenino , Histona Desacetilasas/genética , Humanos , Íleon/citología , Íleon/microbiología , Íleon/patología , Resistencia a la Insulina , Mucosa Intestinal/citología , Mucosa Intestinal/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/etiología , Obesidad/fisiopatología
14.
Nature ; 504(7478): 153-7, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24185009

RESUMEN

The development and severity of inflammatory bowel diseases and other chronic inflammatory conditions can be influenced by host genetic and environmental factors, including signals derived from commensal bacteria. However, the mechanisms that integrate these diverse cues remain undefined. Here we demonstrate that mice with an intestinal epithelial cell (IEC)-specific deletion of the epigenome-modifying enzyme histone deacetylase 3 (HDAC3(ΔIEC) mice) exhibited extensive dysregulation of IEC-intrinsic gene expression, including decreased basal expression of genes associated with antimicrobial defence. Critically, conventionally housed HDAC3(ΔIEC) mice demonstrated loss of Paneth cells, impaired IEC function and alterations in the composition of intestinal commensal bacteria. In addition, HDAC3(ΔIEC) mice showed significantly increased susceptibility to intestinal damage and inflammation, indicating that epithelial expression of HDAC3 has a central role in maintaining intestinal homeostasis. Re-derivation of HDAC3(ΔIEC) mice into germ-free conditions revealed that dysregulated IEC gene expression, Paneth cell homeostasis and intestinal barrier function were largely restored in the absence of commensal bacteria. Although the specific mechanisms through which IEC-intrinsic HDAC3 expression regulates these complex phenotypes remain to be determined, these data indicate that HDAC3 is a critical factor that integrates commensal-bacteria-derived signals to calibrate epithelial cell responses required to establish normal host-commensal relationships and maintain intestinal homeostasis.


Asunto(s)
Regulación de la Expresión Génica , Histona Desacetilasas/metabolismo , Homeostasis , Mucosa Intestinal/enzimología , Intestinos/microbiología , Simbiosis , Adulto , Animales , Bacterias/genética , Colitis Ulcerosa/enzimología , Colitis Ulcerosa/genética , Colitis Ulcerosa/microbiología , Enfermedad de Crohn/enzimología , Enfermedad de Crohn/genética , Enfermedad de Crohn/microbiología , Femenino , Eliminación de Gen , Perfilación de la Expresión Génica , Histona Desacetilasas/genética , Humanos , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Células de Paneth/citología , Células de Paneth/metabolismo , ARN Ribosómico 16S/genética , Transducción de Señal
15.
Genes Dev ; 25(23): 2480-8, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22156208

RESUMEN

Macrophages, a key cellular component of inflammation, become functionally polarized in a signal- and context-specific manner. Th2 cytokines such as interleukin 4 (IL-4) polarize macrophages to a state of alternative activation that limits inflammation and promotes wound healing. Alternative activation is mediated by a transcriptional program that is influenced by epigenomic modifications, including histone acetylation. Here we report that macrophages lacking histone deacetylase 3 (HDAC3) display a polarization phenotype similar to IL-4-induced alternative activation and, furthermore, are hyperresponsive to IL-4 stimulation. Throughout the macrophage genome, HDAC3 deacetylates histone tails at regulatory regions, leading to repression of many IL-4-regulated genes characteristic of alternative activation. Following exposure to Schistosoma mansoni eggs, a model of Th2 cytokine-mediated disease that is limited by alternative activation, pulmonary inflammation was ameliorated in mice lacking HDAC3 in macrophages. Thus, HDAC3 functions in alternative activation as a brake whose release could be of benefit in the treatment of multiple inflammatory diseases.


Asunto(s)
Epigénesis Genética , Histona Desacetilasas/genética , Activación de Macrófagos/genética , Macrófagos/metabolismo , Animales , Histona Desacetilasas/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Macrófagos/inmunología , Ratones , Ratones Endogámicos , Neumonía/enzimología , Neumonía/inmunología , Neumonía/parasitología , Schistosoma mansoni , Células Th2/inmunología , Células Th2/metabolismo
16.
Trends Immunol ; 35(11): 518-25, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25443494

RESUMEN

The trillions of beneficial commensal microorganisms that normally reside in the gastrointestinal tract have emerged as a critical source of environmentally-derived stimuli that can impact health and disease. However, the underlying cellular and molecular mechanisms that recognize commensal bacteria-derived signals and regulate mammalian homeostasis are just beginning to be defined. Highly coordinated epigenomic modifications allow mammals to alter the transcriptional program of a cell in response to environmental cues. These modifications may play a key role in regulating the dynamic relationship between mammals and their microbiota. We review recent advances in understanding the interplay between the microbiota and mammalian epigenomic pathways, and highlight emerging findings that implicate a central role for histone deacetylases (HDACs) in orchestrating host-microbiota interactions.


Asunto(s)
Epigénesis Genética , Epigenómica , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/fisiología , Regulación de la Expresión Génica , Microbiota , Animales , Células Sanguíneas/metabolismo , Microambiente Celular , Interacción Gen-Ambiente , Histona Desacetilasas/metabolismo , Homeostasis , Interacciones Huésped-Patógeno , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología
17.
Toxicol Pathol ; 43(1): 101-6, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25330924

RESUMEN

The mammalian gastrointestinal tract is home to trillions of commensal microorganisms that collectively make up the intestinal microbiota. These microbes are important environmental factors that regulate homeostasis, and alterations in the composition of the microbiota have been associated with several diseases, including inflammatory bowel disease, diabetes, and cancer. New research is beginning to uncover epigenomic pathways that may regulate this relationship with the microbiota. Epigenomic modifications alter the structure of the chromatin and therefore regulate the transcriptional program of a cell. These modifications are maintained by the dynamic activity of various modifying and demodifying enzymes, the activities of which can be influenced by metabolites and other environmental cues. Histone deacetylases (HDACs) are a class of epigenomic-modifying enzymes that are regulated by both endogenous and exogenous factors, and recent studies have suggested that host HDAC expression is important for regulating communication between the intestinal microbiota and mammalian host cells.


Asunto(s)
Epigenómica/métodos , Microbiota/genética , Animales , Humanos
18.
J Immunol ; 190(5): 2292-300, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23355735

RESUMEN

Resistin-like molecule (RELM)α belongs to a family of secreted mammalian proteins that have putative immunomodulatory functions. Recent studies have identified a pathogenic role for RELMα in chemically induced colitis through effects on innate cell populations. However, whether RELMα regulates intestinal adaptive immunity to enteric pathogens is unknown. In this study, we employed Citrobacter rodentium as a physiologic model of pathogenic Escherichia coli-induced diarrheal disease, colitis, and Th17 cell responses. In response to Citrobacter, RELMα expression was induced in intestinal epithelial cells, infiltrating macrophages, and eosinophils of the infected colons. Citrobacter-infected RELMα(-/-) mice exhibited reduced infection-induced intestinal inflammation, characterized by decreased leukocyte recruitment to the colons and reduced immune cell activation compared with wild-type (WT) mice. Interestingly, Citrobacter colonization and clearance were unaffected in RELMα(-/-) mice, suggesting that the immune stimulatory effects of RELMα following Citrobacter infection were pathologic rather than host-protective. Furthermore, infected RELMα(-/-) mice exhibited decreased CD4(+) T cell expression of the proinflammatory cytokine IL-17A. To directly test whether RELMα promoted Citrobacter-induced intestinal inflammation via IL-17A, infected WT and IL-17A(-/-) mice were treated with rRELMα. RELMα treatment of Citrobacter-infected WT mice exacerbated intestinal inflammation and IL-17A expression whereas IL-17A(-/-) mice were protected from RELMα-induced intestinal inflammation. Finally, infected RELMα(-/-) mice exhibited reduced levels of serum IL-23p19 compared with WT mice, and RELMα(-/-) peritoneal macrophages showed deficient IL-23p19 induction. Taken together, these data identify a proinflammatory role for RELMα in bacterial-induced colitis and suggest that the IL-23/Th17 axis is a critical mediator of RELMα-induced inflammation.


Asunto(s)
Citrobacter rodentium/inmunología , Inflamación/inmunología , Péptidos y Proteínas de Señalización Intercelular/inmunología , Interleucina-17/inmunología , Intestinos/efectos de los fármacos , Macrófagos Peritoneales/efectos de los fármacos , Células Th17/efectos de los fármacos , Inmunidad Adaptativa/efectos de los fármacos , Animales , Citrobacter rodentium/patogenicidad , Sulfato de Dextran , Eosinófilos/efectos de los fármacos , Eosinófilos/inmunología , Eosinófilos/patología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Células Epiteliales/patología , Femenino , Expresión Génica/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/microbiología , Inflamación/patología , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/farmacología , Interleucina-17/deficiencia , Interleucina-17/genética , Subunidad p19 de la Interleucina-23/sangre , Subunidad p19 de la Interleucina-23/inmunología , Intestinos/inmunología , Intestinos/microbiología , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/farmacología , Células Th17/inmunología , Células Th17/patología
19.
Nature ; 456(7224): 997-1000, 2008 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-19037247

RESUMEN

Rhythmic changes in histone acetylation at circadian clock genes suggest that temporal modulation of gene expression is regulated by chromatin modifications. Furthermore, recent studies demonstrate a critical relationship between circadian and metabolic physiology. The nuclear receptor corepressor 1 (Ncor1) functions as an activating subunit for the chromatin modifying enzyme histone deacetylase 3 (Hdac3). Lack of Ncor1 is incompatible with life, and hence it is unknown whether Ncor1, and particularly its regulation of Hdac3, is critical for adult mammalian physiology. Here we show that specific, genetic disruption of the Ncor1-Hdac3 interaction in mice causes aberrant regulation of clock genes and results in abnormal circadian behaviour. These mice are also leaner and more insulin-sensitive owing to increased energy expenditure. Unexpectedly, loss of a functional Ncor1-Hdac3 complex in vivo does not lead to sustained increases in known catabolic genes, but instead significantly alters the oscillatory patterns of several metabolic genes, demonstrating that circadian regulation of metabolism is critical for normal energy balance. These findings indicate that activation of Hdac3 by Ncor1 is a nodal point in the epigenetic regulation of circadian and metabolic physiology.


Asunto(s)
Ritmo Circadiano/fisiología , Histona Desacetilasas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción ARNTL , Sustitución de Aminoácidos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Relojes Biológicos/genética , Relojes Biológicos/fisiología , Células Cultivadas , Ritmo Circadiano/genética , Dieta , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Femenino , Regulación de la Expresión Génica , Histona Desacetilasas/genética , Hígado/enzimología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/química , Proteínas Nucleares/genética , Co-Represor 1 de Receptor Nuclear , Obesidad/enzimología , Obesidad/genética , Obesidad/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética
20.
Mucosal Immunol ; 17(2): 303-313, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428738

RESUMEN

The mammalian gastrointestinal tract hosts a diverse community of trillions of microorganisms, collectively termed the microbiota, which play a fundamental role in regulating tissue physiology and immunity. Recent studies have sought to dissect the cellular and molecular mechanisms mediating communication between the microbiota and host immune system. Epithelial cells line the intestine and form an initial barrier separating the microbiota from underlying immune cells, and disruption of epithelial function has been associated with various conditions ranging from infection to inflammatory bowel diseases and cancer. From several studies, it is now clear that epithelial cells integrate signals from commensal microbes. Importantly, these non-hematopoietic cells also direct regulatory mechanisms that instruct the recruitment and function of microbiota-sensitive immune cells. In this review, we discuss the central role that has emerged for epithelial cells in orchestrating intestinal immunity and highlight epithelial pathways through which the microbiota can calibrate tissue-intrinsic immune responses.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Microbiota , Animales , Humanos , Intestinos , Enfermedades Inflamatorias del Intestino/metabolismo , Sistema Inmunológico , Mucosa Intestinal , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA