RESUMEN
A set of glutamylases and deglutamylases controls levels of tubulin polyglutamylation, a prominent post-translational modification of neuronal microtubules. Defective tubulin polyglutamylation was first linked to neurodegeneration in the Purkinje cell degeneration (pcd) mouse, which lacks deglutamylase CCP1, displays massive cerebellar atrophy, and accumulates abnormally glutamylated tubulin in degenerating neurons. We found biallelic rare and damaging variants in the gene encoding CCP1 in 13 individuals with infantile-onset neurodegeneration and confirmed the absence of functional CCP1 along with dysregulated tubulin polyglutamylation. The human disease mainly affected the cerebellum, spinal motor neurons, and peripheral nerves. We also demonstrate previously unrecognized peripheral nerve and spinal motor neuron degeneration in pcd mice, which thus recapitulated key features of the human disease. Our findings link human neurodegeneration to tubulin polyglutamylation, entailing this post-translational modification as a potential target for drug development for neurodegenerative disorders.
Asunto(s)
Carboxipeptidasas/deficiencia , Cerebelo/enzimología , Neuronas Motoras/enzimología , Nervios Periféricos/enzimología , Células de Purkinje/enzimología , Columna Vertebral/enzimología , Degeneraciones Espinocerebelosas/enzimología , Cerebelo/patología , Femenino , Proteínas de Unión al GTP , Humanos , Masculino , Neuronas Motoras/patología , Péptidos/genética , Péptidos/metabolismo , Nervios Periféricos/patología , Procesamiento Proteico-Postraduccional , Células de Purkinje/patología , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina , Columna Vertebral/patología , Degeneraciones Espinocerebelosas/genética , Degeneraciones Espinocerebelosas/patologíaRESUMEN
Human 4-hydroxyphenylpyruvate dioxygenase-like (HPDL) is a putative iron-containing non-heme oxygenase of unknown specificity and biological significance. We report 25 families containing 34 individuals with neurological disease associated with biallelic HPDL variants. Phenotypes ranged from juvenile-onset pure hereditary spastic paraplegia to infantile-onset spasticity and global developmental delays, sometimes complicated by episodes of neurological and respiratory decompensation. Variants included bona fide pathogenic truncating changes, although most were missense substitutions. Functionality of variants could not be determined directly as the enzymatic specificity of HPDL is unknown; however, when HPDL missense substitutions were introduced into 4-hydroxyphenylpyruvate dioxygenase (HPPD, an HPDL orthologue), they impaired the ability of HPPD to convert 4-hydroxyphenylpyruvate into homogentisate. Moreover, three additional sets of experiments provided evidence for a role of HPDL in the nervous system and further supported its link to neurological disease: (i) HPDL was expressed in the nervous system and expression increased during neural differentiation; (ii) knockdown of zebrafish hpdl led to abnormal motor behaviour, replicating aspects of the human disease; and (iii) HPDL localized to mitochondria, consistent with mitochondrial disease that is often associated with neurological manifestations. Our findings suggest that biallelic HPDL variants cause a syndrome varying from juvenile-onset pure hereditary spastic paraplegia to infantile-onset spastic tetraplegia associated with global developmental delays.
Asunto(s)
Oxigenasas/genética , Paraplejía Espástica Hereditaria/genética , Animales , Femenino , Humanos , Masculino , Ratones , Mutación , Linaje , Ratas , Pez CebraRESUMEN
Genet Med advance online publication, January 22, 2015; doi:10.1038/gim.2014.205. In the Advance Online Publication version, of this article, there is a mistake on page 2 in the first paragraph of the Materials and Methods section. The sentence beginning "Among 3,459 probands initially referred for HCM genetic testing " the correct number of probands is 3,473 not 3,459. The authors regret the error.
RESUMEN
PURPOSE: Hypertrophic cardiomyopathy (HCM) is caused primarily by pathogenic variants in genes encoding sarcomere proteins. We report genetic testing results for HCM in 2,912 unrelated individuals with nonsyndromic presentations from a broad referral population over 10 years. METHODS: Genetic testing was performed by Sanger sequencing for 10 genes from 2004 to 2007, by HCM CardioChip for 11 genes from 2007 to 2011 and by next-generation sequencing for 18, 46, or 51 genes from 2011 onward. RESULTS: The detection rate is ~32% among unselected probands, with inconclusive results in an additional 15%. Detection rates were not significantly different between adult and pediatric probands but were higher in females compared with males. An expanded gene panel encompassing more than 50 genes identified only a very small number of additional pathogenic variants beyond those identifiable in our original panels, which examined 11 genes. Familial genetic testing in at-risk family members eliminated the need for longitudinal cardiac evaluations in 691 individuals. Based on the projected costs derived from Medicare fee schedules for the recommended clinical evaluations of HCM family members by the American College of Cardiology Foundation/American Heart Association, our data indicate that genetic testing resulted in a minimum cost savings of about $0.7 million. CONCLUSION: Clinical HCM genetic testing provides a definitive molecular diagnosis for many patients and provides cost savings to families. Expanded gene panels have not substantively increased the clinical sensitivity of HCM testing, suggesting major additional causes of HCM still remain to be identified.
Asunto(s)
Cardiomiopatía Hipertrófica/diagnóstico , Cardiomiopatía Hipertrófica/genética , Pruebas Genéticas , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Cardiomiopatía Hipertrófica/epidemiología , Niño , Preescolar , Costos y Análisis de Costo , Femenino , Predisposición Genética a la Enfermedad , Pruebas Genéticas/economía , Pruebas Genéticas/métodos , Pruebas Genéticas/normas , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos/economía , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/normas , Sensibilidad y Especificidad , Adulto JovenRESUMEN
OBJECTIVE: Interpreting whole-exome sequencing (WES) data are challenging, requiring extensive time, and effort to review all the variants in the variant call format. Here, we examined the application of custom filters to narrow the number of candidate variants in a consanguineous population that requires further analysis. METHODS: In 100 cases undergoing WES, we applied a custom filtration process to look primarily for homozygous variants in autosomal recessive (AR) disorders, and second for variants in either autosomal dominant or x-linked disorders. RESULTS: Most identified disease-causing variants were homozygous in AR disorders. By applying our custom filtration process, we narrowed the number of candidate variants requiring further analysis to 5-15 per case while maintaining a high detection rate and completing analysis in around 45 min. CONCLUSION: A custom filtration process and strategy targeting a specific population provide excellent detection rates in less time and should be considered as a first-tier laboratory workflow for analysis.
RESUMEN
BACKGROUND: Inborn errors of metabolism (IEMs) are individually rare; however, they are collectively common. More than 600 human diseases caused by inborn errors of metabolism are now recognized, and this number is constantly increasing as new concepts and techniques become available for identifying biochemical phenotypes. The aim of this study was to determine the type and distribution of IEMs in patients presenting to a tertiary care center in Saudi Arabia. METHOD: We conducted a retrospective review of children diagnosed with IEMs presenting to the Pediatric Department of King Abdulaziz Medical City in Riyadh, Saudi Arabia over a 13-year period. RESULTS: Over the 13- year period of this retrospective cohort, the total number of live births reached 110,601. A total of 187 patients were diagnosed with IEMs, representing a incidence of 169 in 100,000 births (1:591). Of these, 121 patients (64.7 %) were identified to have small molecule diseases and 66 (35.3 %) to have large molecule diseases. Organic acidemias were the most common small molecule IEMs, while lysosomal storage disorders (LSD) were the most common large molecule diseases. Sphingolipidosis were the most common LSD. CONCLUSION: Our study confirms the previous results of the high rate of IEMs in Saudi Arabia and urges the health care strategists in the country to devise a long-term strategic plan, including an IEM national registry and a high school carrier screening program, for the prevention of such disorders. In addition, we identified 43 novel mutations that were not described previously, which will help in the molecular diagnosis of these disorders.