Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Methods ; 226: 49-53, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38621436

RESUMEN

Epigenetic proteins (EP) play a role in the progression of a wide range of diseases, including autoimmune disorders, neurological disorders, and cancer. Recognizing their different functions has prompted researchers to investigate them as potential therapeutic targets and pharmacological targets. This paper proposes a novel deep learning-based model that accurately predicts EP. This study introduces a novel deep learning-based model that accurately predicts EP. Our approach entails generating two distinct datasets for training and evaluating the model. We then use three distinct strategies to transform protein sequences to numerical representations: Dipeptide Deviation from Expected Mean (DDE), Dipeptide Composition (DPC), and Group Amino Acid (GAAC). Following that, we train and compare the performance of four advanced deep learning models algorithms: Ensemble Residual Convolutional Neural Network (ERCNN), Generative Adversarial Network (GAN), Convolutional Neural Network (CNN), and Gated Recurrent Unit (GRU). The DDE encoding combined with the ERCNN model demonstrates the best performance on both datasets. This study demonstrates deep learning's potential for precisely predicting EP, which can considerably accelerate research and streamline drug discovery efforts. This analytical method has the potential to find new therapeutic targets and advance our understanding of EP activities in disease.


Asunto(s)
Aprendizaje Profundo , Descubrimiento de Drogas , Redes Neurales de la Computación , Descubrimiento de Drogas/métodos , Humanos , Epigénesis Genética/efectos de los fármacos , Algoritmos , Proteínas/química
2.
J Chem Inf Model ; 63(21): 6537-6554, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37905969

RESUMEN

Inflammation is a biologically resistant response to harmful stimuli, such as infection, damaged cells, toxic chemicals, or tissue injuries. Its purpose is to eradicate pathogenic micro-organisms or irritants and facilitate tissue repair. Prolonged inflammation can result in chronic inflammatory diseases. However, wet-laboratory-based treatments are costly and time-consuming and may have adverse side effects on normal cells. In the past decade, peptide therapeutics have gained significant attention due to their high specificity in targeting affected cells without affecting healthy cells. Motivated by the significance of peptide-based therapies, we developed a highly discriminative prediction model called AIPs-SnTCN to predict anti-inflammatory peptides accurately. The peptide samples are encoded using word embedding techniques such as skip-gram and attention-based bidirectional encoder representation using a transformer (BERT). The conjoint triad feature (CTF) also collects structure-based cluster profile features. The fused vector of word embedding and sequential features is formed to compensate for the limitations of single encoding methods. Support vector machine-based recursive feature elimination (SVM-RFE) is applied to choose the ranking-based optimal space. The optimized feature space is trained by using an improved self-normalized temporal convolutional network (SnTCN). The AIPs-SnTCN model achieved a predictive accuracy of 95.86% and an AUC of 0.97 by using training samples. In the case of the alternate training data set, our model obtained an accuracy of 92.04% and an AUC of 0.96. The proposed AIPs-SnTCN model outperformed existing models with an ∼19% higher accuracy and an ∼14% higher AUC value. The reliability and efficacy of our AIPs-SnTCN model make it a valuable tool for scientists and may play a beneficial role in pharmaceutical design and research academia.


Asunto(s)
Antiinflamatorios , Péptidos , Humanos , Reproducibilidad de los Resultados , Péptidos/farmacología , Péptidos/química , Inflamación/tratamiento farmacológico , Máquina de Vectores de Soporte
3.
J Biomol Struct Dyn ; : 1-11, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38450715

RESUMEN

Vascular endothelial growth factor (VEGF) is involved in the development and progression of various diseases, including cancer, diabetic retinopathy, macular degeneration and arthritis. Understanding the role of VEGF in various disorders has led to the development of effective treatments, including anti-VEGF drugs, which have significantly improved therapeutic methods. Accurate VEGF identification is critical, yet experimental identification is expensive and time-consuming. This study presents Deep-VEGF, a novel computational model for VEGF prediction based on deep-stacked ensemble learning. We formulated two datasets using primary sequences. A novel feature descriptor named K-Space Tri Slicing-Bigram position-specific scoring metrix (KSTS-BPSSM) is constructed to extract numerical features from primary sequences. The model training is performed by deep learning techniques, including gated recurrent unit (GRU), generative adversarial network (GAN) and convolutional neural network (CNN). The GRU and CNN are ensembled using stacking learning approach. KSTS-BPSSM-based ensemble model secured the most accurate predictive outcomes, surpassing other competitive predictors across both training and testing datasets. This demonstrates the potential of leveraging deep learning for accurate VEGF prediction as a powerful tool to accelerate research, streamline drug discovery and uncover novel therapeutic targets. This insightful approach holds promise for expanding our knowledge of VEGF's role in health and disease.Communicated by Ramaswamy H. Sarma.

4.
Sci Rep ; 14(1): 12601, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824162

RESUMEN

Data categorization is a top concern in medical data to predict and detect illnesses; thus, it is applied in modern healthcare informatics. In modern informatics, machine learning and deep learning models have enjoyed great attention for categorizing medical data and improving illness detection. However, the existing techniques, such as features with high dimensionality, computational complexity, and long-term execution duration, raise fundamental problems. This study presents a novel classification model employing metaheuristic methods to maximize efficient positives on Chronic Kidney Disease diagnosis. The medical data is initially massively pre-processed, where the data is purified with various mechanisms, including missing values resolution, data transformation, and the employment of normalization procedures. The focus of such processes is to leverage the handling of the missing values and prepare the data for deep analysis. We adopt the Binary Grey Wolf Optimization method, a reliable subset selection feature using metaheuristics. This operation is aimed at improving illness prediction accuracy. In the classification step, the model adopts the Extreme Learning Machine with hidden nodes through data optimization to predict the presence of CKD. The complete classifier evaluation employs established measures, including recall, specificity, kappa, F-score, and accuracy, in addition to the feature selection. Data related to the study show that the proposed approach records high levels of accuracy, which is better than the existing models.


Asunto(s)
Informática Médica , Insuficiencia Renal Crónica , Humanos , Insuficiencia Renal Crónica/diagnóstico , Informática Médica/métodos , Aprendizaje Automático , Aprendizaje Profundo , Algoritmos , Masculino , Femenino , Persona de Mediana Edad
5.
Biomedicines ; 11(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36672693

RESUMEN

Brain tumors affect the normal functioning of the brain and if not treated in time these cancerous cells may affect the other tissues, blood vessels, and nerves surrounding these cells. Today, a large population worldwide is affected by the precarious disease of the brain tumor. Healthy tissues of the brain are suspected to be damaged because of tumors that become the most significant reason for a large number of deaths nowadays. Therefore, their early detection is necessary to prevent patients from unfortunate mishaps resulting in loss of lives. The manual detection of brain tumors is a challenging task due to discrepancies in appearance in terms of shape, size, nucleus, etc. As a result, an automatic system is required for the early detection of brain tumors. In this paper, the detection of tumors in brain cells is carried out using a deep convolutional neural network with stochastic gradient descent (SGD) optimization algorithm. The multi-classification of brain tumors is performed using the ResNet-50 model and evaluated on the public Kaggle brain-tumor dataset. The method achieved 99.82% and 99.5% training and testing accuracy, respectively. The experimental result indicates that the proposed model outperformed baseline methods, and provides a compelling reason to be applied to other diseases.

6.
Biomedicines ; 10(11)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36359317

RESUMEN

Heart disease is one of the key contributors to human death. Each year, several people die due to this disease. According to the WHO, 17.9 million people die each year due to heart disease. With the various technologies and techniques developed for heart-disease detection, the use of image classification can further improve the results. Image classification is a significant matter of concern in modern times. It is one of the most basic jobs in pattern identification and computer vision, and refers to assigning one or more labels to images. Pattern identification from images has become easier by using machine learning, and deep learning has rendered it more precise than traditional image classification methods. This study aims to use a deep-learning approach using image classification for heart-disease detection. A deep convolutional neural network (DCNN) is currently the most popular classification technique for image recognition. The proposed model is evaluated on the public UCI heart-disease dataset comprising 1050 patients and 14 attributes. By gathering a set of directly obtainable features from the heart-disease dataset, we considered this feature vector to be input for a DCNN to discriminate whether an instance belongs to a healthy or cardiac disease class. To assess the performance of the proposed method, different performance metrics, namely, accuracy, precision, recall, and the F1 measure, were employed, and our model achieved validation accuracy of 91.7%. The experimental results indicate the effectiveness of the proposed approach in a real-world environment.

7.
Diagnostics (Basel) ; 12(8)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-36010231

RESUMEN

In December 2019, the novel coronavirus disease 2019 (COVID-19) appeared. Being highly contagious and with no effective treatment available, the only solution was to detect and isolate infected patients to further break the chain of infection. The shortage of test kits and other drawbacks of lab tests motivated researchers to build an automated diagnosis system using chest X-rays and CT scanning. The reviewed works in this study use AI coupled with the radiological image processing of raw chest X-rays and CT images to train various CNN models. They use transfer learning and numerous types of binary and multi-class classifications. The models are trained and validated on several datasets, the attributes of which are also discussed. The obtained results of various algorithms are later compared using performance metrics such as accuracy, F1 score, and AUC. Major challenges faced in this research domain are the limited availability of COVID image data and the high accuracy of the prediction of the severity of patients using deep learning compared to well-known methods of COVID-19 detection such as PCR tests. These automated detection systems using CXR technology are reliable enough to help radiologists in the initial screening and in the immediate diagnosis of infected individuals. They are preferred because of their low cost, availability, and fast results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA