Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Soc Nephrol ; 33(4): 747-768, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35110364

RESUMEN

BACKGROUND: Inducible disruption of cilia-related genes in adult mice results in slowly progressive cystic disease, which can be greatly accelerated by renal injury. METHODS: To identify in an unbiased manner modifier cells that may be influencing the differential rate of cyst growth in injured versus non-injured cilia mutant kidneys at a time of similar cyst severity, we generated a single-cell atlas of cystic kidney disease. We conducted RNA-seq on 79,355 cells from control mice and adult-induced conditional Ift88 mice (hereafter referred to as cilia mutant mice) that were harvested approximately 7 months post-induction or 8 weeks post 30-minute unilateral ischemia reperfusion injury. RESULTS: Analyses of single-cell RNA-seq data of CD45+ immune cells revealed that adaptive immune cells differed more in cluster composition, cell proportion, and gene expression than cells of myeloid origin when comparing cystic models with one another and with non-cystic controls. Surprisingly, genetic deletion of adaptive immune cells significantly reduced injury-accelerated cystic disease but had no effect on cyst growth in non-injured cilia mutant mice, independent of the rate of cyst growth or underlying genetic mutation. Using NicheNet, we identified a list of candidate cell types and ligands that were enriched in injured cilia mutant mice compared with aged cilia mutant mice and non-cystic controls that may be responsible for the observed dependence on adaptive immune cells during injury-accelerated cystic disease. CONCLUSIONS: Collectively, these data highlight the diversity of immune cell involvement in cystic kidney disease.


Asunto(s)
Quistes , Enfermedades Renales Poliquísticas , Animales , Cilios/metabolismo , Quistes/genética , Riñón/metabolismo , Ratones , Mutación , Enfermedades Renales Poliquísticas/metabolismo
2.
Lab Invest ; 101(10): 1382-1393, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34158590

RESUMEN

Hepatorenal fibrocystic disease (HRFCD) is a genetically inherited disorder related to primary cilia dysfunction in which patients display varying levels of fibrosis, bile duct expansion, and inflammation. In mouse models of HRFCD, the phenotype is greatly impacted by the genetic background in which the mutation is placed. Macrophages are a common factor associated with progression of HRFCD and are also strongly influenced by the genetic background. These data led us to hypothesize that macrophage subtypes that change in relation to the genetic background are responsible for the variable phenotypic outcomes in HRFCD. To test this hypothesis, we utilized a mouse model of HRFCD (Ift88Orpk mice) on the C57BL/6 and BALB/c inbred backgrounds that have well-documented differences in macrophage subtypes. Our analyses of infiltrating macrophage subtypes confirm that genetic strain influences the subtype of infiltrating macrophage present during normal postnatal liver development and in Ift88Orpk livers (Ly6clo in C57BL/6 vs Ly6chi in BALB/c). Each infiltrating macrophage subtype was similarly associated with a unique phenotypic outcome as analysis of liver tissue shows that C57BL/6 Ift88Orpk mice have increased bile duct expansion, but reduced levels of fibrosis compared to BALB/c Ift88Orpk livers. RNA sequencing data suggest that the ability to infiltrate macrophage subtypes to influence the phenotypic outcome may be due to unique ligand-receptor signaling between infiltrating macrophages and cilia dysfunctional biliary epithelium. To evaluate whether specific macrophage subtypes cause the observed phenotypic divergence, we analyzed the liver phenotype in BALB/c Ift88Orpk mice on a CCR2-/- background. Unexpectedly, the loss of Ly6chi macrophages, which were strongly enriched in BALB/c Ift88Orpk mice, did not significantly alter liver fibrosis. These data indicate that macrophage subtypes may correlate with HRFCD phenotypic outcome, but do not directly cause the pathology.


Asunto(s)
Cirrosis Hepática , Macrófagos , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Hígado/metabolismo , Macrófagos/clasificación , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fenotipo
3.
J Am Soc Nephrol ; 30(10): 1841-1856, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31337691

RESUMEN

BACKGROUND: Mutations affecting cilia proteins have an established role in renal cyst formation. In mice, the rate of cystogenesis is influenced by the age at which cilia dysfunction occurs and whether the kidney has been injured. Disruption of cilia function before postnatal day 12-14 results in rapid cyst formation; however, cyst formation is slower when cilia dysfunction is induced after postnatal day 14. Rapid cyst formation can also be induced in conditional adult cilia mutant mice by introducing renal injury. Previous studies indicate that macrophages are involved in cyst formation, however the specific role and type of macrophages responsible has not been clarified. METHODS: We analyzed resident macrophage number and subtypes during postnatal renal maturation and after renal injury in control and conditional Ift88 cilia mutant mice. We also used a pharmacological inhibitor of resident macrophage proliferation and accumulation to determine the importance of these cells during rapid cyst formation. RESULTS: Our data show that renal resident macrophages undergo a phenotypic switch from R2b (CD11clo) to R2a (CD11chi) during postnatal renal maturation. The timing of this switch correlates with the period in which cyst formation transitions from rapid to slow following induction of cilia dysfunction. Renal injury induces the reaccumulation of juvenile-like R2b resident macrophages in cilia mutant mice and restores rapid cystogenesis. Loss of primary cilia in injured conditional Ift88 mice results in enhanced epithelial production of membrane-bound CSF1, a cytokine that promotes resident macrophage proliferation. Inhibiting CSF1/CSF1-receptor signaling with a CSF1R kinase inhibitor reduces resident macrophage proliferation, R2b resident macrophage accumulation, and renal cyst formation in two mouse models of cystic disease. CONCLUSIONS: These data uncover an important pathogenic role for resident macrophages during rapid cyst progression.


Asunto(s)
Enfermedades Renales Quísticas/etiología , Macrófagos/fisiología , Animales , Cilios/genética , Femenino , Riñón/crecimiento & desarrollo , Macrófagos/clasificación , Masculino , Ratones , Mutación
4.
Dis Model Mech ; 16(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36457161

RESUMEN

Although renal macrophages have been shown to contribute to cyst development in polycystic kidney disease (PKD) animal models, it remains unclear whether there is a specific macrophage subpopulation involved. Here, we analyzed changes in macrophage populations during renal maturation in association with cystogenesis rates in conditional Pkd2 mutant mice. We observed that CD206+ resident macrophages were minimal in a normal adult kidney but accumulated in cystic areas in adult-induced Pkd2 mutants. Using Cx3cr1 null mice, we reduced macrophage number, including CD206+ macrophages, and showed that this significantly reduced cyst severity in adult-induced Pkd2 mutant kidneys. We also found that the number of CD206+ resident macrophage-like cells increased in kidneys and in the urine from autosomal-dominant PKD (ADPKD) patients relative to the rate of renal functional decline. These data indicate a direct correlation between CD206+ resident macrophages and cyst formation, and reveal that the CD206+ resident macrophages in urine could serve as a biomarker for renal cystic disease activity in preclinical models and ADPKD patients. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Quistes , Riñón Poliquístico Autosómico Dominante , Ratones , Animales , Riñón , Macrófagos , Ratones Noqueados , Biomarcadores , Modelos Animales de Enfermedad
5.
Front Immunol ; 14: 1082078, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37256130

RESUMEN

Kidney macrophages are comprised of both monocyte-derived and tissue resident populations; however, the heterogeneity of kidney macrophages and factors that regulate their heterogeneity are poorly understood. Herein, we performed single cell RNA sequencing (scRNAseq), fate mapping, and parabiosis to define the cellular heterogeneity of kidney macrophages in healthy mice. Our data indicate that healthy mouse kidneys contain four major subsets of monocytes and two major subsets of kidney resident macrophages (KRM) including a population with enriched Ccr2 expression, suggesting monocyte origin. Surprisingly, fate mapping data using the newly developed Ms4a3Cre Rosa Stopf/f TdT model indicate that less than 50% of Ccr2+ KRM are derived from Ly6chi monocytes. Instead, we find that Ccr2 expression in KRM reflects their spatial distribution as this cell population is almost exclusively found in the kidney cortex. We also identified Cx3cr1 as a gene that governs cortex specific accumulation of Ccr2+ KRM and show that loss of Ccr2+ KRM reduces the severity of cystic kidney disease in a mouse model where cysts are mainly localized to the kidney cortex. Collectively, our data indicate that Cx3cr1 regulates KRM heterogeneity and niche-specific disease progression.


Asunto(s)
Macrófagos , Monocitos , Ratones , Animales , Macrófagos/metabolismo , Monocitos/metabolismo , Riñón/metabolismo , Receptores de Quimiocina/metabolismo , Modelos Animales de Enfermedad , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA