Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 258: 119427, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38889840

RESUMEN

This review approach is divided into two scopes to focus the pollution threats. We cover the applications of nanomaterials to curtail the pollution induced by fossil fuel combustion, and textile dye effluents. Toxic emissions released from automobile exhaust that comprise of NOX. SOX and PAHs compile to harsh breathing and respiratory troubles. The effluents generated from the mammoth textile and leather industry is potential threat to beget massive health issues to human life, and environmental problem. Part I projects the broad envisage on role of nano materials in production of alternative biofuels. In addition, green sources for synthesizing nanomaterials are given special importance. Nano catalyst's utilization in bio-derived fuels such as biogas, bio-oil, bioethanol, and biodiesel are catered to this article. Part II cover the current statistics of textile effluent pollution level in India and its steps in confronting the risks of pollution are discussed. A clear picture of the nano techniques in pre-treatment, and the recent nano related trends pursued in industries to eliminate the dyes and chemicals from the discharges is discussed. The substantial aspect of nano catalysis in achieving emission-free fuel and toxic-free effluents and the augmentation in this field is conferred. This review portrays the dependency on nano materials & technology for sustainable future.


Asunto(s)
Combustibles Fósiles , Nanoestructuras , Industria Textil , Nanoestructuras/química , Combustibles Fósiles/análisis , Residuos Industriales/análisis , Textiles/análisis , Biocombustibles/análisis
2.
Environ Res ; 258: 119482, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38914252

RESUMEN

In this study, we studied the hydrocracking of waste chicken oil (WCO) catalyzed by mesoporous SO42-/KIT-6. The study included WCO extraction, SO42-/KIT-6 catalyst synthesis, hydrocracking, and catalytic characterization. XRD patterns revealed intense peaks in the low-angle region, with shoulder peaks showing an increase in sulphate loading from 10% to 30%. The BET-specific surface area for the pure KIT-6 supports measured at 1003 m2/g, indicative of a well-defined mesoporous structure. Thermogravimetric analysis (TGA) showed a two-stage weight loss, attributed to the elimination of hydrated water (about 200 °C) and decomposition of sulphate ions (400-450 °C). SEM analysis highlighted the surface morphology of the active SK-2 catalyst. Hydrocatalytic and catalytic cracking reactions were performed, and about 99.8% conversion was achieved with 20 mL/H H2 flow, whereas higher production of bioliquids was observed at a flow of 15 mL/h. The hydrocracking mechanism was also studied to understand the formation of lower hydrocarbons. GC analyses of simulated distilled gasoline, kerosene, and diesel showed diverse hydrocarbon compositions. For engine testing, non-hydrocracked fuel rose to 28 kW at 3000 rpm and declined to 21 kW at 3500 rpm. Emission analysis revealed decreasing trends in NOX emissions of hydrogen-rich blends, with values of 65 ppm, 54 ppm, and 48 ppm for petrol, NHBL, and HBL, respectively. Similarly, SO2 emissions reduced from petrol to NHBL and HBL at 910 ppm, 800 ppm, and 600 ppm, respectively, suggesting reduced environmental impact. CO emissions exhibited a substantial reduction in NHBL (0.90%) and HBL (0.54%) compared to petrol (2.70%), emphasizing the cleaner combustion characteristics. Our results provide a comprehensive exploration of waste chicken oil hydrocracking, emphasizing catalyst synthesis, fuel characterization, engine performance, and environmental impact, thereby contributing valuable insights to the field of sustainable bioenergy.


Asunto(s)
Pollos , Animales , Catálisis , Aceites/química
3.
Drug Chem Toxicol ; 47(1): 90-100, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37314742

RESUMEN

The present study was designed to green synthesize titanium dioxide nanoparticles (G-TiO2 NPs) using Salacia reticulata leaf extract as a reducing and capping agent to assess antidiabetic, anti-inflammatory, and antibacterial effects as well as toxicity evaluation in zebrafish. Besides, zebrafish embryos were employed to study the effect of G-TiO2 NPs on embryonic development. Zebrafish embryos were treated with TiO2 as well as G-TiO2 NPs at four different concentrations, i.e., 25, 50, 100, and 200 µg/ml for 24-96-hour post-fertilization (hpf). The SEM analysis of G-TiO2 NPs confirmed that the size was in the range of 32-46 nm and characterized by EDX, X-ray diffraction (XRD), FTIR, UV-vis spectra. During 24-96-hour post-fertilization (hpf), the results showed that 25-100 µg/ml of TiO2 and G-TiO2 NP instigated developmental acute toxicity in these embryos, causing mortality, hatching delay, and malformation. TiO2 and G-TiO2 NPs exposure induced axis bent, tail bent, spinal cord curvature, yolk-sac, and pericardial edema. Exposure of larvae to the highest concentrations of 200 µg/ml TiO2 and G-TiO2 NPs caused maximum mortality at all time points and reached 70% and 50%, respectively, at 96 hpf. Besides, both TiO2 and G-TiO2 NP revealed antidiabetic and anti-inflammatory effects in vitro. In addition, G-TiO2 NPs exhibited antibacterial effects. Taken together, this study provided a valuable insight into the synthesis of TiO2 NPs using green methods and the synthesized G-TiO2 NPs possess moderate toxicity and potent antidiabetic, anti-inflammatory and antibacterial activities.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Nanopartículas , Animales , Pez Cebra , Nanopartículas del Metal/toxicidad , Antibacterianos/toxicidad , Titanio/toxicidad , Hipoglucemiantes , Antiinflamatorios
4.
Chem Biodivers ; 21(8): e202400534, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38771305

RESUMEN

Pyrrole, with its versatile heterocyclic ring structure, serves as a valuable template for generating a diverse range of lead compounds with various pharmacophores. Researchers and scientists globally are intrigued by pyrrole and its analogs for their broad pharmacological potential, prompting thorough investigations aimed at advancing human welfare. This comprehensive review delves into the diverse activities exhibited by pyrrole compounds, encompassing their synthesis, reactions, and pharmacological properties alongside their derivatives. In addition to detailing the characteristics of pyrrole and its derivatives within the context of green chemistry, the review also examines microwave-assisted reactions. It provides insights into their chemical structures, natural occurrences, and potential applications across various domains. Furthermore, the article investigates structural alterations of pyrrole compounds and their implications on their functionality, highlighting their versatility as foundational elements for both functional materials and bioactive compounds. The review emphasizes the need for ongoing research and development in the field of pyrrole compounds to discover new activities and benefits.


Asunto(s)
Pirroles , Pirroles/química , Pirroles/farmacología , Pirroles/síntesis química , Humanos , Estructura Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Microondas , Relación Estructura-Actividad , Tecnología Química Verde
5.
Drug Chem Toxicol ; : 1-11, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039826

RESUMEN

Iron oxide nanoparticles (Fe3O4 NPs) have gained considerable attention due to their diverse applications in various fields. However, concerns about their potential toxic effects on the environment and living organisms have also emerged. In this study, we synthesized and characterized Fe3O4 NPs and assessed their immunotoxicity on the coelomocytes of Eisenia fetida. The Fe3O4 NPs were synthesized using a co-precipitation method, and their physicochemical properties were determined using techniques such as X-ray diffraction (XRD), scanning electron microscopy-energy dispersive X-ray (SEM-EDX), transmission electron microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR). The synthesized Fe3O4 NPs exhibited a uniform size distribution with spherical morphology and the phase purity was confirmed from XRD analysis. To evaluate the immunotoxicity of Fe3O4 NPs, Eisenia fetida coelomocytes were exposed to various concentrations of Fe3O4 NPs for 14 days. Furthermore, we analyzed the impact of Fe3O4 NPs on the biochemical parameters, including superoxide dismutase (SOD), catalase (CAT), acid phosphatase (APs), alkaline phosphatase (ALP), and total protein content (TPC), as well as conducted a histological examination. Biochemical analysis revealed significant alterations in the activity levels of SOD, CAT, APs, ALP, and TPC in the coelomocytes, indicating immune system dysregulation upon exposure to Fe3O4 NPs. Moreover, histological examination demonstrated structural changes, suggesting cellular damage caused by Fe3O4 NPs. These findings provide valuable insights into the immunotoxic effects of Fe3O4 NPs on Eisenia fetida and underscore the need for further investigation into the potential environmental impact of nanoparticles.

6.
J Environ Manage ; 368: 122239, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182380

RESUMEN

Chromium (Cr), a potent heavy metal, threatens rice cultivation due to its escalating presence in soil from human activities. Wild rice contains useful genes for phytoremediation; however, it is difficult to use directly for metal mitigation. Here, a single segment substitution line (SSSL), SG001, was developed by crossing O. glumaepatula and Huajingxian74 (HJX) to evaluate the survival ability of plants against Cr. Further, we explored the potential effect of calcium oxide nanoparticles (CaO-NPs) (50 µM) to minimize the toxic effect of Cr (100 µM) in rice cultivars, SG001 and HJX. The findings of this study indicated that Cr toxicity led to increased oxidative stress. This was shown by higher levels of hydrogen peroxide (H2O2), which was increased by 104% in SG001 and 177% in HJX, and malondialdehyde (MDA) increased by 79% in SG001 and 135% in HJX. Furthermore, it also depicted that Cr toxicity considerably declined shoot and root length, shoot and root fresh weight by 30%, 27%, 25%, and 20% in SG001 and 44%, 51%, 42%, and 45% in HJX, respectively. This mitigation was evidenced by decreased Cr contents, increased calcium (Ca) levels in SG001, and the maintenance of chlorophyll, antioxidant defense, and gene expression levels. Moreover, there was a notable reduction in MDA and H2O2, while the defense mechanisms of key antioxidants, including ascorbate peroxidase, superoxide dismutase, glutathione, catalase, and peroxidase were upregulated, along with an increase in soluble protein contents in both rice cultivars after applying CaO-NPs. CaO-NPs effectively restored cellular and subcellular structural integrity and growth in both lines, which had been seriously disrupted by Cr toxicity. Overall, our findings suggest that SG001, in combination with CaO-NPs, could serve as an effective strategy to mitigate Cr toxicity in plants.

7.
Clin Genet ; 103(2): 219-225, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36155908

RESUMEN

POPDC1 also known as BVES, is a highly conserved transmembrane protein, important for striated muscle function and homeostasis. Pathogenic variants in the POPDC1 gene are associated with limb-girdle muscular dystrophy type 25 (LGMDR25). In the present study, we performed trio-whole exome sequencing (WES) followed by Sanger sequencing on a single family having LGMD clinical features. Protein modeling of all POPDC1 missense variants (POPDC1Pro134Leu , POPDC1Ile193Ser , and POPDC1Ser201Phe ) associated with LGMDR25 were performed using Molecular Dynamics (MD) simulation. We identified a homozygous missense variant (c.401C>T; p.Pro134Leu) in the POPDC1 gene. Altered 3D structure, disruptive fluctuation, less compactness, and instability were observed in all the three variants of POPDC1 protein models. In comparison, POPDC1Ser201Phe protein dynamics were more unstable than other variants. Functional study of newly identified variant would add key answers to underlying mechanisms of the disease.


Asunto(s)
Distrofia Muscular de Cinturas , Humanos , Moléculas de Adhesión Celular/genética , Homocigoto , Proteínas de la Membrana/genética , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Distrofia Muscular de Cinturas/genética , Mutación Missense/genética
8.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569457

RESUMEN

Forebrain ischemia-reperfusion (IR) injury causes neurological impairments due to decreased cerebral autoregulation, hypoperfusion, and edema in the hours to days following the restoration of spontaneous circulation. This study aimed to examine the protective and/or therapeutic effects of cerebrolysin (CBL) in managing forebrain IR injury and any probable underlying mechanisms. To study the contribution of reperfusion to forebrain injury, we developed a transient dual carotid artery ligation (tDCAL/IR) mouse model. Five equal groups of six BLC57 mice were created: Group 1: control group (no surgery was performed); Group 2: sham surgery (surgery was performed without IR); Group 3: tDCAL/IR (surgery with IR via permanently ligating the left CA and temporarily closing the right CA for 30 min, followed by reperfusion for 72 h); Group 4: CBL + tDCAL/IR (CBL was given intravenously at a 60 mg/kg BW dose 30 min before IR); and Group 5: tDCAL/IR + CBL (CBL was administered i.v. at 60 mg/kg BW three hours after IR). At 72 h following IR, the mice were euthanized. CBL administration 3 h after IR improved neurological functional recovery, enhanced anti-inflammatory and antioxidant activities, alleviated apoptotic neuronal death, and inhibited reactive microglial and astrocyte activation, resulting in neuroprotection after IR injury in the tDCAL/IR + CBL mice group as compared to the other groups. Furthermore, CBL reduced the TLRs/NF-kB/cytokines while activating the Keap1/Nrf2/antioxidant signaling pathway. These results indicate that CBL may improve neurologic function in mice following IR.


Asunto(s)
Antioxidantes , Daño por Reperfusión , Ratones , Animales , Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Transducción de Señal , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Modelos Animales de Enfermedad , Prosencéfalo/metabolismo , Estrés Oxidativo
9.
J Gene Med ; 24(4): e3412, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35075722

RESUMEN

BACKGROUND: Limb-girdle muscular dystrophy (LGMD) comprises a heterogeneous group of diseases, affecting different muscles, predominantly skeletal muscles and cardiac muscles of the body. LGMD is classified into two main subtypes A and B, which are further subclassified into eight dominant and thirty recessive subtypes. Three genes, namely POPDC1, POPDC2 and POPDC3, encode popeye domain-containing protein (POPDC), and the variants of POPDC1 and POPDC3 genes have been associated with LGMD. METHODS: In the present study, we performed whole-exome sequencing (WES) analysis on a single-family to investigate the hallmark features of LGMD. The results of WES were further confirmed by Sanger sequencing and 3D protein modeling was also conducted. RESULTS: WES data analysis and Sanger sequencing revealed a homozygous missense variant (c.460A>G; p.Lys154Glu) at a highly conserved amino acid position in the POPDC3. Mutations in the POPDC3 gene have been previously associated with recessive limb-girdle muscular dystrophy type 26. 3D protein modeling further suggested that the identified variant might affect the POPDC3 structure and proper function. CONCLUSIONS: The present study confirms the role of POPDC3 in LGMD, and will facilitate genetic counseling of the family to mitigate the risks of the carrier or affects on future pregnancies.


Asunto(s)
Moléculas de Adhesión Celular , Proteínas Musculares , Distrofia Muscular de Cinturas , Moléculas de Adhesión Celular/genética , Homocigoto , Humanos , Proteínas Musculares/genética , Músculo Esquelético , Distrofia Muscular de Cinturas/genética , Mutación , Mutación Missense
10.
Inflammopharmacology ; 29(5): 1413-1425, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34302591

RESUMEN

Venlafaxine is a serotonin-norepinephrine reuptake inhibitor used to treat depression. Previous studies demonstrated its anti-nociceptive and anti-inflammatory activities through the suppression of pro-inflammatory cytokines. Present research aimed to explore its anti-arthritic potential. Different in-vitro assays including egg albumin, bovine serum albumin denaturation and human red blood cell (RBC) membrane stabilization assays along with in-vivo models of formaldehyde and complete Freund's adjuvant-induced arthritis were used to study its anti-arthritic effect. Venlafaxine inhibited egg albumin and bovine serum albumin denaturation and preserve the integrity of red blood cells membrane in concentration-dependent manner. In formaldehyde-induced arthritis venlafaxine significantly (p < 0.001) reduced the paw edema on treatment for 10 days. Chronic administration of venlafaxine for 28 days in Freund's adjuvant-induced arthritis model decreased the paw volume (p < 0.001), arthritic index (p < 0.01), flexion pain score (p < 0.05), mobility score (p < 0.05), and improved the stance score (p < 0.05). Venlafaxine also significantly declined the rheumatoid factor (p < 0.01) and C-reactive protein (p < 0.05) levels and increased the RBC count (p < 0.01) and Hb value (p < 0.001). Upon PCR analysis venlafaxine remarkably turndown the mRNA expression of TNF-α, IL-6, IL-1ß, and COX-2. Taken together it is inferred from current findings that venlafaxine possesses the significant anti-arthritic activity and could be a potential therapeutic option for the treatment of rheumatoid arthritis.


Asunto(s)
Antirreumáticos/farmacología , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Clorhidrato de Venlafaxina/farmacología , Animales , Antirreumáticos/administración & dosificación , Artritis Experimental/patología , Artritis Reumatoide/patología , Ciclooxigenasa 2/genética , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Femenino , Adyuvante de Freund , Humanos , Interleucina-1beta/genética , Interleucina-6/genética , Masculino , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/genética , Clorhidrato de Venlafaxina/administración & dosificación
11.
J Basic Clin Physiol Pharmacol ; 35(3): 175-179, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677327

RESUMEN

OBJECTIVES: Majhool date (Phoenix dactylifera), renowned for its premium taste and texture, is extensively consumed in the Islamic world, particularly during Ramadan. Despite its popularity, concerns persist regarding its potential to induce diabetes in non-patients. This study aims to explore the diabetogenic effects of prolonged Majhool date (Phoenix dactylifera) consumption, the widely used fruit in the Islamic world, through animal experiments and human clinical data. METHODS: Medjool dates were processed into an ethanolic extract for the animal experiment. Then, 21 Balb/c mice received varying doses of the extract for one month. The fasting blood glucose levels were analyzed at the beginning and after one month of consumption of the Majhool date extract. For the clinical study, 387 healthy participants were recruited, with fasting blood glucose levels assessed before and after Ramadan, a period of heightened Majhool date consumption. RESULTS: all groups of the experimental animals exhibited a significant (p<0.05) weight increase after Majhool date consumption, while no significant (p>0.05) alteration in fasting blood glucose levels among groups. In addition, it was found that fasting blood glucose levels remained statistically unchanged (p>0.05) after heightened Majhool date consumption among humans. CONCLUSIONS: The study challenges the belief that Majhool date induces diabetes, supported by both animal and human data. Findings suggest that Majhool date consumption, even at higher doses, does not induce diabetes. Further investigations could explore the impact of other date varieties on the fasting blood glucose levels.


Asunto(s)
Glucemia , Ayuno , Islamismo , Ratones Endogámicos BALB C , Phoeniceae , Extractos Vegetales , Animales , Glucemia/efectos de los fármacos , Humanos , Ayuno/sangre , Phoeniceae/química , Ratones , Masculino , Adulto , Femenino , Extractos Vegetales/farmacología , Persona de Mediana Edad , Adulto Joven , Frutas/química
12.
Artículo en Inglés | MEDLINE | ID: mdl-39167170

RESUMEN

Eye diseases, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR), impose a substantial health cost on a worldwide scale. Carotenoids have emerged as intriguing candidates for pharmacological treatment of various disorders. Their therapeutic effectiveness, however, is hindered by poor solubility and vulnerability to degradation. Nanocarriers, such as nanoparticles, liposomes, and micelles, provide a transformational way to overcome these limits. This review explores the pharmacological potential of carotenoids, namely lutein, zeaxanthin, and astaxanthin, to treat several ocular disorders. The main emphasis is on their anti-inflammatory and antioxidant actions, which help to counteract inflammation and oxidative stress, crucial factors in the development of AMD and DR. The review evaluates the significant benefits of nano-formulated carotenoids, such as improved bioavailability, higher cellular absorption, precise administration to particular ocular tissues, and greater biostability, which make them superior to conventional carotenoids. Some clinical studies on the beneficial properties of carotenoids in eye diseases are discussed. Furthermore, safety and regulatory concerns are also taken into account. Ultimately, carotenoids, especially when created in their nano form, have significant potential for safeguarding eyesight and enhancing the overall well-being of several individuals afflicted with vision-endangering eye diseases.

13.
ACS Omega ; 9(32): 35154-35169, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39157129

RESUMEN

The rising number of acute kidney injury cases worldwide due to acetaminophen (APAP) emphasizes the critical need for effective prevention strategies to counteract APAP's detrimental effects. This study examined the kidney-protective capabilities of ethanolic extracts from grape seeds and peanut skins (GSEE and PSEE, respectively) in comparison with silymarin in rats that experienced an APAP overdose. The phenolic compounds in these extracts were measured by using high-performance liquid chromatography (HPLC). In the experiment, Sixty adult male albino rats were divided into five groups of 12. The Control group received 0.5 mL of saline via a gastric tube. Group II received acetaminophen (APAP, 640 mg/kg per day via a gastric tube) to induce renal injury, following Ucar et al. and Islam et al. Groups III, IV, and V received silymarin (50 mg/kg), grape seed extract (200 mg/kg), and peanut skin extract (200 mg/kg), respectively, along with 640 mg of APAP/kg per day for 21 days. Post APAP treatment, significant increases in serum urea and creatinine levels were noted, along with notable decreases in the percentage of body weight gain. Furthermore, there were increases in oxidative stress and inflammatory markers in the kidney tissues, including heightened mRNA expressions of renal iNOS and CYP2E1, which were confirmed through histological studies. The administration of GSEE, PSEE, and silymarin mitigated these adverse effects, likely due to their high phenolic content, which is recognized for its antioxidant and anti-inflammatory effects. GSEE, in particular, showed efficacy comparable to that of silymarin. Molecular docking studies revealed that APAP impeded critical enzymes essential for cellular antioxidant defense, whereas the bioactive compounds in the grape seed and peanut skin extracts effectively inhibited key enzymes and receptors involved in inflammation and oxidative stress. These findings suggest that GSEE and PSEE could serve as viable alternative treatments for kidney damage induced by APAP. Further research to isolate and identify these effective compounds is recommended.

14.
Front Chem ; 12: 1351827, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38566899

RESUMEN

Habenaria aitchisonii Reichb was analyzed in this research, including its chemical composition and its in vitro antioxidant, anti-inflammatory, acute oral toxicity, and antinociceptive activity. The chloroform and ethyl acetate fractions were found to be the most powerful based on in vitro antioxidant, anti-inflammatory, and analgesic assays. The acute oral toxicity of the crude methanolic extract was determined before in vivo studies. The acetic acid and formalin tests were used to measure the antinociceptive effect, and the potential mechanisms involved in antinociception were explored. The carrageenan-induced paw edema test was used to examine the immediate anti-inflammatory effect, and many phlogistic agents were used to determine the specific mechanism. Furthermore, for ex vivo activities, the mice were sacrificed, the forebrain was isolated, and the antioxidant levels of glutathione (GSH), superoxide dismutase (SOD), thiobarbituric acid reactive substances (TBARS) and catalase (CAT) were estimated using a UV spectrophotometer. No toxicity was seen at oral dosages up to 3,000 mg/kg. The antinociceptive impact was much higher than the standard drug. Both the inflammatory and neurogenic phases of the formalin experiment revealed an analgesic effect in the chloroform and ethyl acetate fractions. In carrageenan anti-inflammatory assays, the chloroform fraction (Ha.Chf) was the most potent fraction. We further studied the GC-MS of crude plant extract and found a total of 18 compounds. In the anti-inflammatory mechanism, it was observed that the Ha.Chf inhibits the COX-2 as well as 5-LOX pathways. The results exhibited that this species is a good source of phytocomponents like germacrone, which can be employed as a sustainable and natural therapeutic agent, supporting its traditional use in folk medicine for inflammatory conditions and pain.

15.
Artículo en Inglés | MEDLINE | ID: mdl-39105799

RESUMEN

Monoterpenoids, compounds found in various organisms, have diverse applications in various industries. Their effectiveness is influenced by the oil's chemical composition, which in turn is influenced by plant genotype, environmental conditions, cultivation practices, and plant development stage. They are used in various industries due to their distinctive odor and taste, serving as ingredients, additives, insecticides, and repellents. These compounds have synergistic properties, resulting in superior combined effects over discrete ones, potentially beneficial for various health purposes. Many experimental studies have investigated their interactions with other ingredients and their antibacterial, insecticidal, antifungal, anticancer, anti-inflammatory, and antioxidant properties. This review discusses potential synergistic interactions between monoterpenoids and other compounds, their sources, and biological functions. It also emphasizes the urgent need for more research on their bioavailability and toxicity, underlining the importance and relevance of this comprehensive study in the current scientific landscape.

16.
PLoS One ; 19(6): e0303784, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38905286

RESUMEN

Lung cancer, a relentless and challenging disease, demands unwavering attention in drug design research. Single-target drugs have yielded limited success, unable to effectively address this malignancy's profound heterogeneity and often developed resistance. Consequently, the clarion call for lung cancer drug design echoes louder than ever, and multitargeted drug design emerges as an imperative approach in this landscape, which is done by concurrently targeting multiple proteins and pathways and offering a beacon of hope. This study is focused on the multitargeted drug designing approach by identifying drug candidates against human cyclin-dependent kinase-2, SRC-2 domains of C-ABL, epidermal growth factor and receptor extracellular domains, and insulin-like growth factor-1 receptor kinase. We performed the multitargeted molecular docking studies of Drug Bank compounds using HTVS, SP and XP algorithms and poses filter with MM\GBSA against all proteins and identified DB02504, namely [3-(1-Benzyl-3-Carbamoylmethyl-2-Methyl-1h-Indol-5-Yloxy)-Propyl-]-Phosphonic Acid (3-1-BCMIYPPA) as multitargeted lead with docking and MM\GBSA score range from -8.242 to -6.274 and -28.2 and -44.29 Kcal/mol, respectively. Further, the QikProp-based pharmacokinetic computations and QM-based DFT showed acceptance results against standard values, and interaction fingerprinting reveals that THR, MET, GLY, VAL, LEU, GLU and ASP were among the most interacting residues. The NPT ensemble-based 100ns MD simulation in a neutralised state with an SPC water model has also shown a stable performance and produced deviation and fluctuations <2Å with huge interactions, making it a promising multitargeted drug candidate-however, experimental studies are suggested.


Asunto(s)
Neoplasias Pulmonares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/farmacocinética , Diseño de Fármacos , Indoles/química , Indoles/farmacología , Indoles/farmacocinética , Teoría Funcional de la Densidad
18.
Artif Cells Nanomed Biotechnol ; 51(1): 318-333, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37432048

RESUMEN

The biogenic manufacture of nanoparticles utilising endophytic fungus is an eco-friendly, cost-effective, and secure alternative to constructing chemical methods. The prime focus of the study was to fabricate ZnONPs using the biomass filtrate of endophytic Xylaria arbuscula isolated from Blumea axillaris Linn. and to evaluate their biological properties. The characterisation of the biosynthesized ZnO-NPs was done utilising both spectroscopic and microscopic methods. The bioinspired NPs showed a surface plasmon peak at 370 nm; SEM and TEM micrographs illustrated the hexagonal organisation; XRD spectra proved the crystalline phase as hexagonal wurtzite; EDX analysis confirmed the presence of zinc and oxygen atoms; and the zeta potential analysis proved the stability of ZnONPs. In addition, they also demonstrated significant concentration-dependent inhibition of antimicrobial, antioxidant, anti-inflammatory, and antidiabetic potential in comparison with the reference drugs. In vitro cytotoxicity and wound healing potential of ZnONPs were examined in L929 cell lines, illustrating that they accelerated the wound healing process by roughly 95.37 ± 1.12% after a 24-h exposure to ZnONPs. The photocatalytic activity of the ZnONPs was examined by degrading the methylene blue dye under solar irradiation. In conclusion, our outcomes showed that mycosynthesized ZnONPs possessed potent bioactivity and could be an excellent choice for biomedical applications.


Asunto(s)
Ascomicetos , Asteraceae , Óxido de Zinc , Óxido de Zinc/farmacología , Antioxidantes , Extractos Vegetales/farmacología
19.
J Biomol Struct Dyn ; 41(18): 9121-9133, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36318617

RESUMEN

The pandemic that started in 2020 left us with so much information about viruses and respiratory diseases, and the cause behind it was severe acute respiratory syndrome coronavirus-2 (SARS CoV-2). The world is still recovering, which costs so many economic and other indirect disasters; despite that, no medications are available on the market. Although the WHO approved a few vaccines on an emergency basis, the remarks and the reinfection chances are still under investigation, and a few pharmaceutical companies are also claiming that a few medications can be effective. However, there is no situation in control. SARS CoV-2 mutates and comes in different forms, making the situation unpredictable. In this study, we have screened the complete Asinex's BioDesign library, which contains 170,269 compounds, and shorted the data against the docking score that helps in the identification of 4-[5-(3-Ethoxy-4-hydroxyphenyl)-1-(2-hydroxyethyl)-1H-pyrazol-3-yl]-1, 2-benzenediol (PheroxyPyrabenz) and 1-[(3R,4R)-1-(5-Aminopentanoyl)-4-hydroxy-3-pyrrolidinyl]-1H-pyrrolo[2,3-b]pyridine-4-carboxamide (Carbopyrropyridin) as a significant drug candidate that can work against the multiple proteins of the SARS CoV-2 resulting in seizing the complete biological process of the virus. Further, the study extended to Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and molecular dynamics (MD) simulation of both the compounds with their complexity. The complete workflow of the study has shown satisfactory results, and both drug candidates can potentially stop the hunt for drugs against this virus after its experimental validation. Further, we checked both compounds' absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties, showing case-proof validatory results.Communicated by Ramaswamy H. Sarma.

20.
Mol Syndromol ; 14(1): 11-20, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36777705

RESUMEN

Introduction: Intellectual disability (ID) is a lifelong disability that affects an individual‧s learning capacity and adaptive behavior. Such individuals depend on their families for day-to-day survival and pose a significant challenge to the healthcare system, especially in developing countries. ID is a heterogeneous condition, and genetic studies are essential to unravel the underlying cellular pathway for brain development and functioning. Methods: Here we studied a female index patient, born to a consanguineous Pakistani couple, showing clinical symptoms of ID, ataxia, hypotonia, developmental delay, seizures, speech abnormality, and aggressive behavior. Whole exome sequencing (WES) coupled with Sanger sequencing was performed for molecular diagnosis. Further, 3D protein modeling was performed to see the effect of variant on protein structure. Results: WES identified a novel homozygous missense variant (c.178T>C; p.Tyr60His) in the ANK3 gene. In silico analysis and 3-dimensional (3D) protein modeling supports the deleterious impact of this variant on the encoding protein, which compromises the protein‧s overall structure and function. Conclusion: Our finding supports the clinical and genetic diversity of the ANK3 gene as a plausible candidate gene for ID syndrome. Intelligence is a complex polygenic human trait, and understanding molecular and biological pathways involved in learning and memory can solve the complex puzzle of how cognition develops. Intellectual disability (ID) is defined as a deficit in an individual‧s learning and adaptive behavior at an early age of onset [American Psychiatric Association, 2013]. It is one of the major medical, and cognitive disorders with a prevalence of 1-3% in the population worldwide [Leonard and Wen, 2002]. ID often exists with other disabling mental conditions such as autism, attention deficit hyperactivity disorder, epilepsy, schizophrenia, bipolar disorder, or depression. Almost half of the cases appear to have a genetic explanation that ranges from cytogenetically visible abnormalities to monogenic defects [Flint, 2001; Ropers, 2010; Tucker-Drob et al., 2013]. Intellectual disability is a genetically heterogeneous condition, and more than 700 genes have been identified to cause ID alone or as a part of the syndrome. Research in X-linked ID has identified more than 100 disease-causing genes on the X chromosome that play a role in cognition; however, research into autosomal causes of ID is still ongoing [Vissers et al., 2016].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA