Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genomics Proteomics Bioinformatics ; 6(1): 42-50, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18558384

RESUMEN

Knowledge of simulated microgravity (SMG)-induced changes in the pathogenicity of microorganisms is important for success of long-term spaceflight. In a previous study using the high aspect ratio vessel bioreactor, we showed that the yeast species Saccharomyces cerevisiae underwent a significant phenotypic response when grown in modeled microgravity, which was reflected in the analysis of gene expression profiles. In this study, we establish that Candida albicans responds to SMG in a similar fashion, demonstrating that there is a conserved response among yeast to this environmental stress. We also report that the growth of C. albicans in SMG results in a morphogenic switch that is consistent with enhanced pathogenicity. Specifically, we observed an increase in filamentous forms of the organism and accompanying changes in the expression of two genes associated with the yeast-hyphal transition. The morphological response may have significant implications for astronauts' safety, as the fungal pathogen may become more virulent during spaceflight.


Asunto(s)
Candida albicans/citología , Candida albicans/crecimiento & desarrollo , Regulación Fúngica de la Expresión Génica , Simulación de Ingravidez , Candida albicans/genética , Candida albicans/patogenicidad , Candidiasis/inmunología , Polaridad Celular , Células Cultivadas , Proteínas Fúngicas/genética , Humanos , Microscopía Fluorescente , ARN de Hongos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Virulencia
2.
BMC Genomics ; 8: 3, 2007 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-17201921

RESUMEN

UNLABELLED: The low-shear microgravity environment, modeled by rotating suspension culture bioreactors called high aspect ratio vessels (HARVs), allows investigation in ground-based studies of the effects of microgravity on eukaryotic cells and provides insights into the impact of space flight on cellular physiology. We have previously demonstrated that low-shear modeled microgravity (LSMMG) causes significant phenotypic changes of a select group of Saccharomyces cerevisiae genes associated with the establishment of cell polarity, bipolar budding, and cell separation. However, the mechanisms cells utilize to sense and respond to microgravity and the fundamental gene expression changes that occur are largely unknown. In this study, we examined the global transcriptional response of yeast cells grown under LSMMG conditions using DNA microarray analysis in order to determine if exposure to LSMMG results in changes in gene expression. RESULTS: LSMMG differentially changed the expression of a significant number of genes (1372) when yeast cells were cultured for either five generations or twenty-five generations in HARVs, as compared to cells grown under identical conditions in normal gravity. We identified genes in cell wall integrity signaling pathways containing MAP kinase cascades that may provide clues to novel physiological responses of eukaryotic cells to the external stress of a low-shear modeled microgravity environment. A comparison of the microgravity response to other environmental stress response (ESR) genes showed that 26% of the genes that respond significantly to LSMMG are involved in a general environmental stress response, while 74% of the genes may represent a unique transcriptional response to microgravity. In addition, we found changes in genes involved in budding, cell polarity establishment, and cell separation that validate our hypothesis that phenotypic changes observed in cells grown in microgravity are reflected in genome-wide changes. This study documents a considerable response to yeast cell growth in low-shear modeled microgravity that is evident, at least in part, by changes in gene expression. Notably, we identified genes that are involved in cell signaling pathways that allow cells to detect environmental changes, to respond within the cell, and to change accordingly, as well as genes of unknown function that may have a unique transcriptional response to microgravity. We also uncovered significant changes in the expression of many genes involved in cell polarization and bud formation that correlate well with the phenotypic effects observed in yeast cells when grown under similar conditions. These results are noteworthy as they have implications for human space flight.


Asunto(s)
Perfilación de la Expresión Génica , Saccharomyces cerevisiae/genética , Ingravidez , Análisis por Conglomerados , Regulación Fúngica de la Expresión Génica , Genómica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA