Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 185, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38475707

RESUMEN

BACKGROUND: One of the most widely recognized biostimulators of plant development; is oligoalginate, which regulates the biological processes of plants and was used in horticultural fields as a plant growth regulator. The plan of the current research was to study, however, the foliar application of un-irradiated and irradiated Na-alginate (UISA and ISA) to improve the growth, physiological activity, and other active components of the Egyptian iceberg lettuce plant. Degraded Na-alginate is equipped with exposure of sodium alginate in its solid state to gamma-rays at different dose levels (0.0, 25, 50, 75, and 100 kGy). The characterization of the oligo-alginates achieved by γ-radiation deprivation at different dose levels was performed by FTIR, XRD, TGA, SEM, and TEM. Different concentrations of irradiated sodium alginate at dose levels of 100 kGy (200, 400, 600, and 800 ppm, as well as deionized water used as a control) were sprayed with a hand sprayer every week after transplanting the iceberg lettuce seedlings in the field until the harvest stage. Morphological traits were evaluated, as well as pigments, ascorbic acid, phenols, flavonoids, soluble proteins, and antioxidant activity. RESULTS: Irradiated Na-alginate resulted in the depolymerization of Na-alginate into small molecular-weight oligosaccharides, and the best dose to use was 100 kGy. Certain chemical modifications in the general structure were observed by FTIR analysis. Two absorbed bands at 3329 cm-1 and 1599 cm-1, were recognized that are assigned to O-H and C-O stretching, respectively, and peaks achieved at 1411 cm-1 represent the COO-stretching group connected to the sodium ion. The peak obtained at 1028 cm-1 was owing to the stretching vibration of C-O. The results of TGA provided that the minimum weight reminder was in the ISA at 100 kGy (28.12%) compared to the UISA (43.39%). The images of TEM pointed out that the Na-alginate was globular in shape, with the particle distribution between 12.8 and 21.7 nm in ISA at 100 kGy. Irradiated sodium alginate caused a noteworthy enhancement in the vegetative growth traits (leaf area, stem length, head weight, and leaf number). By spraying 400 ppm, ISA showed a maximum increase in total pigments (2.209 mg/g FW), ascorbic acid (3.13 mg/g fresh weight), phenols (1.399 mg/g FW), flavonoids (0.775 mg/g FW), and antioxidant activities (82.14. %). Also, there were correlation coefficients (R values) between leaf area, stem length, head weight, and leaf number values with total pigment content, antioxidant activity, total soluble proteins, and ascorbic acid. CONCLUSIONS: The outcomes of the recent investigation demonstrated that the application of spraying irradiated Na-alginate (100 kGy) resulted in an improvement of the considered characters.


Asunto(s)
Antioxidantes , Fenómenos Biológicos , Antioxidantes/análisis , Lactuca , Alginatos/química , Ácido Ascórbico , Flavonoides , Fenoles
2.
Biometals ; 36(5): 1059-1079, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37173538

RESUMEN

Spinach seeds were irradiated with gamma-rays after that soaked in zinc oxide nanoparticles (ZnO-NPs) at 0.0, 50, 100 and 200 ppm for twenty-four hours at room temperature. Vegetative plant growth, photosynthetic pigments, and proline contents were investigated. Also, anatomical studies and the polymorphism by the SCoT technique were conducted. The present results revealed that the germination percentage was at the maximum values for the treatment of 100 ppm ZnO-NPs (92%), followed by 100 ppm ZnO-NPs + 60 Gy (90%). The application of ZnO-NPs resulted in an enhancement in the plant length. The maximum of chlorophylls and carotenoids content was recorded in the treatment, 100 ppm ZnO-NPs + 60 Gy. Meanwhile, the irradiation dose level (60 Gy) with all ZnO-NPs treatments increased proline content and reached its maximum increase to 1.069 mg/g FW for the treatment 60 Gy combined with 200 ppm ZnO-NPs. Also, the anatomical studies declared that there were variations between the treatments; un-irradiated and irradiated combined with ZnO-NPs plants which reveal that the leave epidermal tissue increased with 200 ppm ZnO-NPs in both the upper and lower epidermis. While irradiated plants with 60 Gy combined with 100 ppm ZnO-NPs gave more thickness of upper epidermis. As well as SCoT molecular marker technique effectively induced molecular alterations between the treatments. Where, SCoT primers targeted many new and missing amplicons that are expected to be associated with the lowly and highly expressed genes with 18.2 and 81.8%, respectively. Also, showed that the soaking in ZnO-NPs was helped for reducing molecular alteration rate, both spontaneous and induced by gamma irradiation. This nominates ZnO-NPs as potential nano-protective agents that can reduce irradiation-induced genetic damage.


Asunto(s)
Nanopartículas , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Spinacia oleracea , Semillas , Biomarcadores
3.
Foods ; 11(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35954028

RESUMEN

Roasting is an important step in sesame (Sesamum indicum L.) processing. The current research was undertaken to evaluate the oil content, fatty acid (FA) profiles, and physicochemical characteristics of oil recovered from sesame roasted by different methods (cooker oven, stovetop pan, microwave, and electric frying pan). Roasting sesame seeds changed their oil content according to the roasting method used, with content ranging from 49.83% in control to 59.85% in the roasting by microwave. In oils recovered from raw or roasted seeds, seven fatty acids were obtained through gas chromatography. Changes in the fatty acid profiles occurred in all the treatments, and the total unsaturated fatty acid content was higher than that of saturated fatty acids. The obtained peroxide number of sesame oils was inside the rate of 3.90 meq/kg oil for microwave treatment versus 1.59 meq/kg oil for unroasted. The highest acid value was with the stovetop pan treatment at 3.78 mg/g, followed by the microwave treatment at 3.24 mg/g; the oven treatment gave the lowest value at 1.66 mg/g. The lowest iodine value was observed with the electric frying pan treatment (102.30/100 g oil), and phytosterols were most abundant with the microwave treatment. Moreover, the phenolic and flavonoid contents and antioxidant activity were the highest with the microwave roasting. The FTIR spectrum illustrated slight differences in peaks intensity (1738, 1454, 1151, 710 cm-1) between the roasting methods used. The finding of the current investigation of roasting methods was that the fatty acid profiles were across methods. As is clear from the obtained results, the microwave roasting treatment is the favoured roasting method for the healthiest sesame seed oil contents. Sesame seeds are considered a significant and abundant resource with numerous beneficial nutrients that positively affect human health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA