Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(19)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37837127

RESUMEN

Smart meter datasets have recently transitioned from monthly intervals to one-second granularity, yielding invaluable insights for diverse metering functions. Clustering analysis, a fundamental data mining technique, is extensively applied to discern unique energy consumption patterns. However, the advent of high-resolution smart meter data brings forth formidable challenges, including non-Gaussian data distributions, unknown cluster counts, and varying feature importance within high-dimensional spaces. This article introduces an innovative learning framework integrating the expectation-maximization algorithm with the minimum message length criterion. This unified approach enables concurrent feature and model selection, finely tuned for the proposed bounded asymmetric generalized Gaussian mixture model with feature saliency. Our experiments aim to replicate an efficient smart meter data analysis scenario by incorporating three distinct feature extraction methods. We rigorously validate the clustering efficacy of our proposed algorithm against several state-of-the-art approaches, employing diverse performance metrics across synthetic and real smart meter datasets. The clusters that we identify effectively highlight variations in residential energy consumption, furnishing utility companies with actionable insights for targeted demand reduction efforts. Moreover, we demonstrate our method's robustness and real-world applicability by harnessing Concordia's High-Performance Computing infrastructure. This facilitates efficient energy pattern characterization, particularly within smart meter environments involving edge cloud computing. Finally, we emphasize that our proposed mixture model outperforms three other models in this paper's comparative study. We achieve superior performance compared to the non-bounded variant of the proposed mixture model by an average percentage improvement of 7.828%.

2.
Appl Intell (Dordr) ; : 1-25, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36685642

RESUMEN

Cross-collection topic models extend previous single-collection topic models, such as Latent Dirichlet Allocation (LDA), to multiple collections. The purpose of cross-collection topic modeling is to model document-topic representations and reveal similarities between each topic and differences among groups. However, the restriction of Dirichlet prior and the significant privacy risk have hampered those models' performance and utility. Training those cross-collection topic models may, in particular, leak sensitive information from the training dataset. To address the two issues mentioned above, we propose a novel model, cross-collection latent Beta-Liouville allocation (ccLBLA), which operates a more powerful prior, Beta-Liouville distribution with a more general covariance structure that enhances topic correlation analysis. To provide privacy protection for the ccLBLA model, we leverage the inherent differential privacy guarantee of the Collapsed Gibbs Sampling (CGS) inference scheme and then propose a hybrid privacy protection algorithm for the ccLBLA model (HPP-ccLBLA) that prevents inferring data from intermediate statistics during the CGS training process without sacrificing its utility. More crucially, our technique is the first attempt to use the cross-collection topic model in image classification applications and investigate the cross-collection topic model's capabilities beyond text analysis. The experimental results for comparative text mining and image classification will show the merits of our proposed approach.

3.
Sensors (Basel) ; 22(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35590880

RESUMEN

Accurate and timely occupancy prediction has the potential to improve the efficiency of energy management systems in smart buildings. Occupancy prediction heavily depends on historical occupancy-related data collected from various sensor sources. Unfortunately, a major problem in that context is the difficulty to collect training data. This situation inspired us to rethink the occupancy prediction problem, proposing the use of an original principled approach based on occupancy estimation via interactive learning to collect the needed training data. Following that, the collected data, along with various features, were fed into several algorithms to predict future occupancy. This paper mainly proposes a weakly supervised occupancy prediction framework based on office sensor readings and occupancy estimations derived from an interactive learning approach. Two studies are the main emphasis of this paper. The first is the prediction of three occupancy states, referred to as discrete states: absence, presence of one occupant, and presence of more than one occupant. The purpose of the second study is to anticipate the future number of occupants, i.e., continuous states. Extensive simulations were run to demonstrate the merits of the proposed prediction framework's performance and to validate the interactive learning-based approach's ability to contribute to the achievement of effective occupancy prediction. The results reveal that LightGBM, a machine learning model, is a better fit for short-term predictions than known recursive neural networks when dealing with a limited dataset. For a 24 h window forecast, LightGBM improved accuracy from 38% to 50%, which is an excellent result for non-aggregated data (single office).


Asunto(s)
Aprendizaje Automático , Entrenamiento Simulado , Algoritmos , Eficiencia , Redes Neurales de la Computación
4.
IEEE Trans Neural Netw Learn Syst ; 34(6): 3111-3123, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34596558

RESUMEN

Bayesian non-negative matrix factorization (BNMF) has been widely used in different applications. In this article, we propose a novel BNMF technique dedicated to semibounded data where each entry of the observed matrix is supposed to follow an Inverted Beta distribution. The model has two parameter matrices with the same size as the observation matrix which we factorize into a product of excitation and basis matrices. Entries of the corresponding basis and excitation matrices follow a Gamma prior. To estimate the parameters of the model, variational Bayesian inference is used. A lower bound approximation for the objective function is used to find an analytically tractable solution for the model. An online extension of the algorithm is also proposed for more scalability and to adapt to streaming data. The model is evaluated on five different applications: part-based decomposition, collaborative filtering, market basket analysis, transactions prediction and items classification, topic mining, and graph embedding on biomedical networks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA