Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-36828347

RESUMEN

The present study evaluated the effect of chronic exposure to oxyfluorfen (OXY) on different physiological responses of male African catfish, Clarias gariepinus, and the ameliorative effect of Chlorella vulgaris. The fish (160 ± 5.10 g) were exposed to 1/20 LC50 of OXY (0.58 mg/L) for 60 consecutive days with or without co-administration of C. vulgaris (25 g/kg diet) in triplicate groups. The results revealed that chronic exposure to a sublethal level of OXY induced severe anemia and leukopenia. OXY-exposed fish experienced hypoproteinemia, marked lower AchE levels, and a significant increase in glucose, liver, and kidney function biomarkers. The DNA fragmentation of the liver increased by 15 % in fish compared to the control. On the other hand, lipid peroxidation, superoxide dismutase, and catalase activities were markedly increased in the liver and testes homogenates of the OXY-exposed fish. Meanwhile, total antioxidant capacity and glutathione S-transferase levels declined in the same tissues. Exposure to OXY induced a significant reduction in testosterone and luteinizing hormone levels and a significant increase in follicle stimulating hormone and estradiol. Meanwhile, C. vulgaris dietary supplementation succeeded in alleviating the negative impact of OXY on hematobiochemical parameters and restoring the antioxidant balance in the liver and testes. Furthermore, it ameliorated endocrine disruption and repaired sex hormone levels. In conclusion, exposure to OXY could induce systemic stress, oxidative stress, and endocrine disruption in male C. gariepinus. The dietary supplementation of C. vulgaris could be a potential protective strategy against the toxicity of OXY.


Asunto(s)
Bagres , Chlorella vulgaris , Masculino , Animales , Antioxidantes/metabolismo , Chlorella vulgaris/metabolismo , Bagres/metabolismo , Estrés Oxidativo , Hormonas Esteroides Gonadales
2.
Saudi J Biol Sci ; 29(2): 1053-1060, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35197774

RESUMEN

Diabetes mellitus (DM) is one of the most serious threats in the 21th century throughout the human population that needs to be addressed cautiously. Nowadays, stem cell injection is considered among the most promising protocols for DM therapy; owing to its marked tissues and organs repair capability. Therefore, our 4 weeks study was undertaken to elucidate the probable beneficial effects of two types of adult mesenchymal stem cells (MSCs) on metabolism disturbance and some tissue function defects in diabetic rats. Animals were classified into 4 groups; the control group, the diabetic group, the diabetic group received a single dose of adipose tissue-derived MSCs and the diabetic group received a single dose of bone marrow-derived MSCs. Herein, both MSCs treated groups markedly reduced hyperglycemia resulting from diabetes induction via lowering serum glucose and rising insulin and C-peptide levels, compared to the diabetic group. Moreover, the increased lipid fractions levels were reverted back to near normal values as a consequence to MSCs injection compared to the diabetic untreated rats. Furthermore, both MSCs types were found to have hepato-renal protective effects indicated through the decreased serum levels of both liver and kidney functions markers in the treated diabetic rats. Taken together, our results highlighted the therapeutic benefits of both MSCs types in alleviating metabolic anomalies and hepato-renal diabetic complications.

3.
Animals (Basel) ; 12(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36496949

RESUMEN

Abamectin (ABM) is a common agricultural pesticide and veterinary anthelmintic drug. It can discharge from the sites of application to aquatic systems via surface run-off or spray drift, causing harmful effects to aquatic organisms. The present study investigated the protective effect of dietary quercetin supplementation on hemato-biochemical parameters and hepato-renal oxidative stress biomarkers in Nile tilapia (Oreochromis niloticus) exposed to a sublethal dose of ABM. Fish were allocated into six equal groups. The first group was kept as a control group. The second and third groups (Q400, and Q800) were fed diets supplemented with two quercetin levels (400 and 800 mg/kg diet), respectively. The fourth group (ABM) was intoxicated with 20.73 µg/L of ABM. The fifth and sixth groups (ABM + Q400, and ABM + Q800) were fed diet supplemented with two quercetin levels (400 and 800 mg/kg diet) and simultaneously intoxicated with ABM for 60 days. The results showed that ABM significantly decreased RBCs, hemoglobin content, hematocrit, total protein, albumin levels, and acetylcholinesterase activity activities compared to the control. Meanwhile, ABM significantly increased white blood cells, glucose, total lipids, cholesterol, and alanine and aspartate aminotransferase activities. Liver and kidney levels of lipid peroxidation was significantly increased, while hepato-renal antioxidant biomarkers (reduced glutathione, super oxide dismutase, catalase, and total antioxidant capacity) were significantly decreased upon ABM exposure. On the other hand, quercetin dietary supplementation improved the hemato-biochemical alterations and alleviated oxidative stress induced by ABM exposure. Fish supplemented with quercetin at a level of 800 mg/kg diet showed better alleviating effects against ABM compared to 400 mg/kg diet. Based on these study findings, we suggest that quercetin dietary supplementation (800 mg/kg) offered direct protection against ABM-induced physiological disturbance and oxidative stress in Nile tilapia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA