Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Neurosci ; 36(28): 7392-406, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27413150

RESUMEN

UNLABELLED: Selective serotonin reuptake inhibitors (SSRIs) are commonly prescribed for depression, but sexual side effects often compromise compliance. These reproductive dysfunctions are likely mediated by elevations of the hormone prolactin. Yet, how serotonin (5-HT) and SSRIs cause changes in prolactin secretion is not known. Here, using in vitro whole-cell patch-clamp recordings, we show that 5-HT hyperpolarizes and abolishes phasic discharge in rat neuroendocrine tuberoinfundibular dopamine (TIDA) neurons, the main inhibitor of prolactin secretion. This process is underpinned by 5-HT1A receptor-mediated activation of G-protein-coupled inwardly rectifying K(+)-like currents. We further demonstrate that the SSRIs, fluoxetine and sertraline, directly suppress TIDA neuron activity through parallel effects, independent of 5-HT transmission. This inhibition involves decreased intrinsic excitability and a slowing of TIDA network rhythms. These findings indicate that SSRIs may inhibit neuroendocrine dopamine release through both 5-HT-dependent and -independent actions, providing a mechanistic explanation for, and potential molecular targets for the amelioration of, the hyperprolactinemia and sexual dysfunction associated with these drugs. SIGNIFICANCE STATEMENT: Depression affects approximately one-tenth of the population and is commonly treated with selective serotonin reuptake inhibitors (SSRIs; e.g., Prozac). Yet, many patients withdraw from SSRI therapy due to sexual side effects (e.g., infertility, menstrual disturbances, and impotence). Although it is generally accepted that sexual side effects are due to the ability of these drugs to elevate blood levels of the hormone prolactin, the mechanism for this hormonal imbalance is not known. Here, we show that SSRIs can inhibit hypothalamic dopamine neurons that normally suppress the secretion of prolactin. Intriguingly this inhibition can be explained both by increased serotonin activity and also by parallel serotonin-independent actions.


Asunto(s)
Antidepresivos/farmacología , Núcleo Arqueado del Hipotálamo/citología , Neuronas Dopaminérgicas/efectos de los fármacos , Lactotrofos/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Serotonina/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Estimulación Eléctrica , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Técnicas In Vitro , Masculino , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Antagonistas de la Serotonina/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Tetrahidronaftalenos/farmacología , Tetrodotoxina/farmacología , Tirosina 3-Monooxigenasa/metabolismo
2.
Science ; 382(6666): 76-81, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37797007

RESUMEN

During pregnancy, physiological adaptations prepare the female body for the challenges of motherhood. Becoming a parent also requires behavioral adaptations. Such adaptations can occur as early as during pregnancy, but how pregnancy hormones remodel parenting circuits to instruct preparatory behavioral changes remains unknown. We found that action of estradiol and progesterone on galanin (Gal)-expressing neurons in the mouse medial preoptic area (MPOA) is critical for pregnancy-induced parental behavior. Whereas estradiol silences MPOAGal neurons and paradoxically increases their excitability, progesterone permanently rewires this circuit node by promoting dendritic spine formation and recruitment of excitatory synaptic inputs. This MPOAGal-specific neural remodeling sparsens population activity in vivo and results in persistently stronger, more selective responses to pup stimuli. Pregnancy hormones thus remodel parenting circuits in anticipation of future behavioral need.


Asunto(s)
Estradiol , Conducta Materna , Responsabilidad Parental , Área Preóptica , Progesterona , Animales , Femenino , Ratones , Embarazo , Estradiol/fisiología , Conducta Materna/fisiología , Conducta Materna/psicología , Responsabilidad Parental/psicología , Área Preóptica/citología , Área Preóptica/fisiología , Progesterona/fisiología , Modelos Animales , Neuronas/metabolismo , Neuronas/fisiología
3.
J Neuroendocrinol ; 32(11): e12881, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32803906

RESUMEN

The secretion of prolactin from the pituitary is negatively controlled by tuberoinfundibular dopamine (TIDA) neurones. The electrical properties of TIDA cells have recently been identified as a modulatory target of neurotransmitters and hormones in the lactotrophic axis. The role of the GABAB receptor in this control has received little attention, yet is of particular interest because it may act as a TIDA neurone autoreceptor. Here, this issue was explored in a spontaneously active rat TIDA in vitro slice preparation using whole-cell recordings. Application of the GABAB receptor agonist, baclofen, dose-dependently slowed down or abolished the network oscillations typical of this preparation. Pharmacological manipulations identify the underlying mechanism as an outward current mediated by G-protein-coupled inwardly rectifying K+ -like channels. In addition to this postsynaptic modulation, we describe a presynaptic modulation where GABAB receptors restrain the release of glutamate and GABA onto TIDA neurones. Our data identify both pre- and postsynaptic modulation of TIDA neurones by GABAB receptors that may play a role in the neuronal network control of pituitary prolactin secretion and lactation.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Células Neuroendocrinas/metabolismo , Receptores de GABA-B/metabolismo , Receptores Presinapticos/metabolismo , Sinapsis/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Baclofeno/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Fenómenos Electrofisiológicos , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/efectos de los fármacos , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Agonistas del GABA/farmacología , Masculino , Células Neuroendocrinas/efectos de los fármacos , Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Canales de Potasio de Rectificación Interna/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de GABA-B/efectos de los fármacos , Receptores Presinapticos/efectos de los fármacos , Sinapsis/efectos de los fármacos
4.
Neuron ; 106(4): 556-558, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32437653

RESUMEN

Hypothalamic stimulation can elicit complex behaviors such as aggression, but how discrete motor components of such behaviors are organized at the circuit level remains largely unknown. In this issue of Neuron, Falkner et al. (2020) find that complex neural representations get transformed into a simplified action signal along a hypothalamic-midbrain pathway.


Asunto(s)
Agresión , Hipotálamo , Mesencéfalo , Neuronas
5.
Mov Disord ; 23(15): 2111-21, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18785230

RESUMEN

How does deep brain stimulation (DBS) applied at high frequency (100 Hz and above, HFS) in diverse points of cortico-basal ganglia thalamo-cortical loops alleviate symptoms of neurological disorders such as Parkinson's disease, dystonia, and obsessive compulsive disorders? Do the effects of HFS stem solely or even largely from local effects on the stimulated brain structure or are they also mediated by actions of HFS on distal structures? Indeed, HFS as an extracellular stimulation is expected to activate subsets of both afferent and efferent axons, leading to antidromic spikes that collide with ongoing spontaneous ones and orthodromic spikes that evoke synaptic responses in target neurons. The present review suggests that HFS interfere with spontaneous pathological patterns by introducing a regular activity in several nodal points of the network. Therefore, the best site of implantation of the HFS electrode may be in a region where the HFS-driven activity spreads to most of the identified, dysrhythmic, neuronal populations without causing additional side effects. This should help tackling the most difficult issue namely, how does the regular HFS-driven activity that dampens the spontaneous pathological one, restore neuronal processing along cortico-basal ganglia-thalamo-cortical loops?


Asunto(s)
Encéfalo/fisiología , Estimulación Encefálica Profunda/métodos , Enfermedades del Sistema Nervioso/terapia , Encéfalo/patología , Estimulación Encefálica Profunda/tendencias , Humanos , Enfermedades del Sistema Nervioso/patología , Neuronas/fisiología
6.
Elife ; 72018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29722649

RESUMEN

Electrical junctions are widespread within the mammalian CNS. Yet, their role in organizing neuronal ensemble activity remains incompletely understood. Here, in a functionally well-characterized system - neuroendocrine tuberoinfundibular dopamine (TIDA) neurons - we demonstrate a striking species difference in network behavior: rat TIDA cells discharge in highly stereotyped, robust, synchronized slow oscillations, whereas mouse oscillations are faster, flexible and show substantial cell-to-cell variability. We show that these distinct operational modes are explained by the presence of strong TIDA-TIDA gap junction coupling in the rat, and its complete absence in the mouse. Both species, however, encompass a similar heterogeneous range of intrinsic resonance frequencies, suggesting similar network building blocks. We demonstrate that gap junctions select and impose the slow network rhythm. These data identify a role for electrical junctions in determining oscillation frequency and show how related species can rely on distinct network strategies to accomplish adaptive control of hormone release.


Asunto(s)
Potenciales de Acción , Relojes Biológicos , Uniones Comunicantes/metabolismo , Red Nerviosa/fisiología , Neuronas/fisiología , Animales , Ratones , Ratas
7.
Sci Rep ; 7: 41535, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28145492

RESUMEN

Hypocretin/Orexin (H/O) neurons of the lateral hypothalamus are compelling modulator candidates for the chronobiology of neuroendocrine output and, as a consequence, hormone release from the anterior pituitary. Here we investigate the effects of H/O peptides upon tuberoinfundibular dopamine (TIDA) neurons - cells which control, via inhibition, the pituitary secretion of prolactin. In whole cell recordings performed in male rat hypothalamic slices, application of H/O-A, as well as H/O-B, excited oscillating TIDA neurons, inducing a reversible depolarising switch from phasic to tonic discharge. The H/O-induced inward current underpinning this effect was post-synaptic (as it endured in the presence of tetrodotoxin), appeared to be carried by a Na+-dependent transient receptor potential-like channel (as it was blocked by 2-APB and was diminished by removal of extracellular Na+), and was a consequence of OX2R receptor activation (as it was blocked by the OX2R receptor antagonist TCS OX2 29, but not the OX1R receptor antagonist SB 334867). Application of the hormone, melatonin, failed to alter TIDA membrane potential or oscillatory activity. This first description of the electrophysiological effects of H/Os upon the TIDA network identifies cellular mechanisms that may contribute to the circadian rhythmicity of prolactin secretion.


Asunto(s)
Cationes/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/fisiología , Receptores de Orexina/metabolismo , Orexinas/farmacología , Potenciales Sinápticos/efectos de los fármacos , Animales , Compuestos de Boro/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Hipotálamo/metabolismo , Inmunohistoquímica , Masculino , Melatonina/metabolismo , Melatonina/farmacología , Sistemas Neurosecretores/efectos de los fármacos , Sistemas Neurosecretores/fisiología , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Ratas , Sodio/metabolismo , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores
8.
Nat Commun ; 5: 4992, 2014 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-25318560

RESUMEN

Synapse degeneration is an early and invariant feature of neurodegenerative diseases. Indeed, synapse loss occurs prior to neuronal degeneration and correlates with the symptom severity of these diseases. However, the molecular mechanisms that trigger synaptic loss remain poorly understood. Here we demonstrate that deficient Wnt signalling elicits synaptic degeneration in the adult striatum. Inducible expression of the secreted Wnt antagonist Dickkopf1 (Dkk1) in adult mice (iDkk1) decreases the number of cortico-striatal glutamatergic synapses and of D1 and D2 dopamine receptor clusters. Synapse loss occurs in the absence of axon retraction or cell death. The remaining excitatory terminals contain fewer synaptic vesicles and have a reduced probability of evoked transmitter release. IDkk1 mice show impaired motor coordination and are irresponsive to amphetamine. These studies identify Wnts as key endogenous regulators of synaptic maintenance and suggest that dysfunction in Wnt signalling contributes to synaptic degeneration at early stages in neurodegenerative diseases.


Asunto(s)
Destreza Motora , Enfermedades Neurodegenerativas/fisiopatología , Sinapsis/patología , Proteínas Wnt/metabolismo , Anfetaminas/química , Animales , Axones/metabolismo , Muerte Celular , Cuerpo Estriado/patología , Dopamina/metabolismo , Doxiciclina/química , Femenino , Heterocigoto , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Transducción de Señal
9.
Front Syst Neurosci ; 5: 43, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21716635

RESUMEN

Excessive burst firing in the dopamine-depleted basal ganglia correlates with severe motor symptoms of Parkinson's disease that are attenuated by high frequency electrical stimulation of the subthalamic nucleus (STN). Here we test the hypothesis that pathological bursts in dopamine-deprived basal ganglia are generated within the STN and transmitted to globus pallidus neurons. To answer this question we recorded excitatory synaptic currents and potentials from subthalamic and pallidal neurons in the basal ganglia slice (BGS) from dopamine-depleted mice while continuously blocking GABA(A) receptors. In control mice, a single electrical stimulus delivered to the internal capsule or the rostral pole of the STN evoked a short duration, small amplitude, monosynaptic EPSC in subthalamic neurons. In contrast, in the dopamine-depleted BGS, this monosynaptic EPSC was amplified and followed by a burst of polysynaptic EPSCs that eventually reverberated three to seven times, providing a long lasting response that gave rise to bursts of EPSCs and spikes in GP neurons. Repetitive (10-120 Hz) stimulation delivered to the STN in the dopamine-depleted BGS attenuated STN-evoked bursts of EPSCs in pallidal neurons after several minutes of stimulation but only high frequency (90-120 Hz) stimulation replaced them with small amplitude EPSCs at 20 Hz. We propose that the polysynaptic pathway within the STN amplifies subthalamic responses to incoming excitation in the dopamine-depleted basal ganglia, thereby transforming the STN into a burst generator and entraining pallidal neurons in pathogenic bursting activities. High frequency stimulation of the STN prevents the transmission of this pathological activity to globus pallidus and imposes a new glutamatergic synaptic noise on pallidal neurons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA