Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 29(4): 926-934, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36416581

RESUMEN

Wheat is a globally important crop and one of the "big three" US field crops. But unlike the other two (maize and soybean), in the United States its development is commercially unattractive, and so its breeding takes place primarily in public universities. Troublingly, the incentive structures within these universities may be hindering genetic improvement just as climate change is complicating breeding efforts. "Business as usual" in the US public wheat-breeding infrastructure may not sustain productivity increases. To address this concern, we held a multidisciplinary conference in which researchers from 12 US (public) universities and one European university shared the current state of knowledge in their disciplines, aired concerns, and proposed initiatives that could facilitate maintaining genetic improvement of wheat in the face of climate change. We discovered that climate-change-oriented breeding efforts are currently considered too risky and/or costly for most university wheat breeders to undertake, leading to a relative lack of breeding efforts that focus on abiotic stressors such as drought and heat. We hypothesize that this risk/cost burden can be reduced through the development of appropriate germplasm, relevant screening mechanisms, consistent germplasm characterization, and innovative models predicting the performance of germplasm under projected future climate conditions. However, doing so will require coordinated, longer-term, inter-regional efforts to generate phenotype data, and the modification of incentive structures to consistently reward such efforts.


Asunto(s)
Cambio Climático , Triticum , Triticum/genética , Fitomejoramiento , Calor , Sequías
2.
BMC Plant Biol ; 22(1): 218, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35477400

RESUMEN

BACKGROUND: Intermediate wheatgrass (IWG) is a novel perennial grain crop currently undergoing domestication. It offers important ecosystem benefits while producing grain suitable for human consumption. Several aspects of plant biology and genetic control are yet to be studied in this new crop. To understand trait behavior and genetic characterization of kernel color in IWG breeding germplasm from the University of Minnesota was evaluated for the CIELAB components (L*, a*, b*) and visual differences. Trait values were used in a genome-wide association scan to reveal genomic regions controlling IWG's kernel color. The usability of genomic prediction in predicting kernel color traits was also evaluated using a four-fold cross validation method. RESULTS: A wide phenotypic variation was observed for all four kernel color traits with pairwise trait correlations ranging from - 0.85 to 0.27. Medium to high estimates of broad sense trait heritabilities were observed and ranged from 0.41 to 0.78. A genome-wide association scan with single SNP markers detected 20 significant marker-trait associations in 9 chromosomes and 23 associations in 10 chromosomes using multi-allelic haplotype blocks. Four of the 20 significant SNP markers and six of the 23 significant haplotype blocks were common between two or more traits. Evaluation of genomic prediction of kernel color traits revealed the visual score to have highest mean predictive ability (r2 = 0.53); r2 for the CIELAB traits ranged from 0.29-0.33. A search for candidate genes led to detection of seven IWG genes in strong alignment with MYB36 transcription factors from other cereal crops of the Triticeae tribe. Three of these seven IWG genes had moderate similarities with R-A1, R-B1, and R-D1, the three genes that control grain color in wheat. CONCLUSIONS: We characterized the distribution of kernel color in IWG for the first time, which revealed a broad phenotypic diversity in an elite breeding germplasm. Identification of genetic loci controlling the trait and a proof-of-concept that genomic selection might be useful in selecting genotypes of interest could help accelerate the breeding of this novel crop towards specific end-use.


Asunto(s)
Agropyron , Estudio de Asociación del Genoma Completo , Agropyron/genética , Mapeo Cromosómico , Ecosistema , Grano Comestible/genética , Genómica , Fitomejoramiento , Poaceae/genética
3.
Plant Biotechnol J ; 20(5): 944-963, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34990041

RESUMEN

Thlaspi arvense (field pennycress) is being domesticated as a winter annual oilseed crop capable of improving ecosystems and intensifying agricultural productivity without increasing land use. It is a selfing diploid with a short life cycle and is amenable to genetic manipulations, making it an accessible field-based model species for genetics and epigenetics. The availability of a high-quality reference genome is vital for understanding pennycress physiology and for clarifying its evolutionary history within the Brassicaceae. Here, we present a chromosome-level genome assembly of var. MN106-Ref with improved gene annotation and use it to investigate gene structure differences between two accessions (MN108 and Spring32-10) that are highly amenable to genetic transformation. We describe non-coding RNAs, pseudogenes and transposable elements, and highlight tissue-specific expression and methylation patterns. Resequencing of forty wild accessions provided insights into genome-wide genetic variation, and QTL regions were identified for a seedling colour phenotype. Altogether, these data will serve as a tool for pennycress improvement in general and for translational research across the Brassicaceae.


Asunto(s)
Thlaspi , Cromosomas , Ecosistema , Genoma de Planta/genética , Anotación de Secuencia Molecular , Thlaspi/genética , Investigación Biomédica Traslacional
4.
Physiol Plant ; 174(5): e13752, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36281842

RESUMEN

Genetic manipulation of whole-plant transpiration rate (TR) response to increasing atmospheric vapor pressure deficit (VPD) is a promising approach for crop adaptation to various drought regimes under current and future climates. Genotypes with a non-linear TR response to VPD are expected to achieve yield gains under terminal drought, thanks to a water conservation strategy, while those with a linear response exhibit a consumptive strategy that is more adequate for well-watered or transient-drought environments. In wheat, previous efforts indicated that TR has a genetic basis under naturally fluctuating conditions, but because TR is responsive to variation in temperature, photosynthetically active radiation, and evaporative demand, the genetic basis of its response VPD per se has never been isolated. To address this, we developed a controlled-environment gravimetric phenotyping approach where we imposed VPD regimes independent from other confounding environmental variables. We screened three nested association mapping populations totaling 150 lines, three times over a 3-year period. The resulting dataset, based on phenotyping nearly 1400 plants, enabled constructing 63-point response curves for each genotype, which were subjected to a genome-wide association study. The analysis revealed a hotspot for TR response to VPD on chromosome 5A, with SNPs explaining up to 17% of the phenotypic variance. The key SNPs were found in haploblocks that are enriched in membrane-associated genes, consistent with the hypothesized physiological determinants of the trait. These results indicate a promising potential for identifying new alleles and designing next-gen wheat cultivars that are better adapted to current and future drought regimes.


Asunto(s)
Estudio de Asociación del Genoma Completo , Triticum , Presión de Vapor , Triticum/genética , Hojas de la Planta/fisiología , Transpiración de Plantas/genética
5.
Environ Sci Technol ; 56(4): 2300-2311, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35103467

RESUMEN

Acute environmental perturbations are reported to induce deterministic microbial community assembly, while it is hypothesized that chronic perturbations promote development of alternative stable states. Such acute or chronic perturbations strongly impact on the pre-adaptation capacity to the perturbation. To determine the importance of the level of microbial pre-adaptation and the community assembly processes following acute or chronic perturbations in the context of hydrocarbon contamination, a model system of pristine and polluted (hydrocarbon-contaminated) sediments was incubated in the absence or presence (discrete or repeated) of hydrocarbon amendment. The community structure of the pristine sediments changed significantly following acute perturbation, with selection of different phylotypes not initially detectable. Conversely, historically polluted sediments maintained the initial community structure, and the historical legacy effect of chronic pollution likely facilitated community stability. An alternative stable state was also reached in the pristine sediments following chronic perturbation, further demonstrating the existence of a legacy effect. Finally, ecosystem functional resilience was demonstrated through occurrence of hydrocarbon degradation by different communities in the tested sites, but the legacy effect of perturbation also strongly influenced the biotic response. This study therefore demonstrates the importance of perturbation chronicity on microbial community assembly processes and reveals ecosystem functional resilience following environmental perturbation.


Asunto(s)
Ecosistema , Microbiota , Contaminación Ambiental , Hidrocarburos/metabolismo
6.
Am J Bioeth ; 22(5): 8-22, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35048782

RESUMEN

The application of artificial intelligence and machine learning (ML) technologies in healthcare have immense potential to improve the care of patients. While there are some emerging practices surrounding responsible ML as well as regulatory frameworks, the traditional role of research ethics oversight has been relatively unexplored regarding its relevance for clinical ML. In this paper, we provide a comprehensive research ethics framework that can apply to the systematic inquiry of ML research across its development cycle. The pathway consists of three stages: (1) exploratory, hypothesis-generating data access; (2) silent period evaluation; (3) prospective clinical evaluation. We connect each stage to its literature and ethical justification and suggest adaptations to traditional paradigms to suit ML while maintaining ethical rigor and the protection of individuals. This pathway can accommodate a multitude of research designs from observational to controlled trials, and the stages can apply individually to a variety of ML applications.


Asunto(s)
Inteligencia Artificial , Comités de Ética en Investigación , Atención a la Salud , Ética en Investigación , Humanos , Consentimiento Informado , Aprendizaje Automático , Estudios Prospectivos
7.
Plant Dis ; 106(2): 439-450, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34353123

RESUMEN

Adult plant resistance (APR) to wheat stem rust has been one of the approaches for resistance breeding since the evolution of the Ug99 race group and other races. This study was conducted to dissect and understand the genetic basis of APR to stem rust in spring wheat line 'Copio'. A total of 176 recombinant inbred lines (RILs) from the cross of susceptible parent 'Apav' with Copio were phenotyped for stem rust resistance in six environments. Composite interval mapping using 762 genotyping-by-sequencing markers identified 16 genomic regions conferring stem rust resistance. Assays with gene-linked molecular markers revealed that Copio carried known APR genes Sr2 and Lr46/Yr29/Sr58 in addition to the 2NS/2AS translocation that harbors race-specific genes Sr38, Lr37, and Yr17. Three quantitative trait loci (QTLs) were mapped on chromosomes 2B, two QTLs on chromosomes 3A, 3B, and 6A each, and one QTL on each of chromosomes 2A, 1B, 2D, 4B, 5D, 6D, and 7A. The QTL QSr.umn.5D is potentially a new resistance gene and contributed to quantitative resistance in Copio. The RILs with allelic combinations of Sr2, Sr38, and Sr58 had 27 to 39% less stem rust coefficient of infection in all field environments compared with RILs with none of these genes, and this gene combination was most effective in the U.S. environments. We conclude that Copio carries several genes that provide both race-specific and non-race-specific resistance to diverse races of stem rust fungus and can be used by breeding programs in pyramiding other effective genes to develop durable resistance in wheat.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Genómica , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
8.
Paediatr Child Health ; 26(2): 99-102, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33747306

RESUMEN

Many medical products that are widely available and commonly used are of animal origin, which can be problematic for those who identify as followers of a particular religion, or have moral commitments or dietary preferences that prohibit or restrict the ingestion of animal products. Given that people are becoming more conscious of the products they ingest, however, we suspect this might be an issue in the foreseeable future, particularly in a multicultural and diverse community like Toronto, Canada. Failure to provide services sensitive to these beliefs and preferences may result in a refusal of medical treatment. In this paper, we aim to identify and explore issues relating to the refusal of animal-derived medical products in paediatric settings by exploring three clinical cases.

9.
Ecol Appl ; 30(7): e02153, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32348601

RESUMEN

California's Central Valley, USA is a critical component of the Pacific Flyway despite loss of more than 90% of its wetlands. Moist soil seed (MSS) wetland plants are now produced by mimicking seasonal flooding in managed wetlands to provide an essential food resource for waterfowl. Managers need MSS plant area and productivity estimates to support waterfowl conservation, yet this remains unknown at the landscape scale. Also the effects of recent drought on MSS plants have not been quantified. We generated Landsat-derived estimates of extents and productivity (seed yield or its proxy, the green chlorophyll index) of major MSS plants including watergrass (Echinochloa crusgalli) and smartweed (Polygonum spp.) (WGSW), and swamp timothy (Crypsis schoenoides) (ST) in all Central Valley managed wetlands from 2007 to 2017. We tested the effects of water year, land ownership and region on plant area and productivity with a multifactor nested analysis of variance. For the San Joaquin Valley, we explored the association between water year and water supply, and we developed metrics to support management decisions. MSS plant area maps were based on a support vector machine classification of Landsat phenology metrics (2017 map overall accuracy: 89%). ST productivity maps were created with a linear regression model of seed yield (n = 68, R2  = 0.53, normalized RMSE = 10.5%). The Central Valley-wide estimated area for ST in 2017 was 32,369 ha (29,845-34,893 ha 95% CI), and 13,012 ha (11,628-14,396 ha) for WGSW. Mean ST seed yield ranged from 577 kg/ha in the Delta Basin to 365 kg/ha in the San Joaquin Basin. WGSW area and ST seed yield decreased while ST area increased in critical drought years compared to normal water years (Scheffe's test, P < 0.05). Greatest ST area increases occurred in the Sacramento Valley (~75%). Voluntary water deliveries increased in normal water years, and ST seed yield increased with water supply. Z scores of ST seed yield can be used to evaluate wetland performance and aid resource allocation decisions. Updated maps will support habitat monitoring, conservation planning and water management in future years, which are likely to face greater uncertainty in water availability with climate change.


Asunto(s)
Tecnología de Sensores Remotos , Suelo , California , Sequías , Semillas , Humedales
10.
Plant J ; 96(6): 1093-1105, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30394623

RESUMEN

Thlaspi arvense (pennycress) has the potential for domestication as a new oilseed crop. Information from an extensive body of research on the related plant species Arabidopsis can be used to greatly speed this process. Genome-scale comparisons in this paper documented that pennycress and Arabidopsis share similar gene duplication. This finding led to the hypothesis that it should be possible to isolate Arabidopsis-like mutants in pennycress. This proved to be true, as forward genetic screens identified floral and vegetative pennycress mutants that were similar to mutants found in Arabidopsis. Extending this approach, it was shown that most of the pennycress genes responsible for the formation of oxidized tannins could be rapidly identified. The causative mutations in the pennycress mutants could be identified either by PCR amplification of candidate genes or through whole-genome sequencing (WGS) analysis. In all, WGS was used to characterize 95 ethyl methane sulfonate mutants, which revealed a mutation rate of 4.09 mutations per megabase. A sufficient number of non-synonymous mutations were identified to create a mutant gene index that could be used for reverse genetic approaches to identify pennycress mutants of interest. As proof of concept, a Ta-max3-like dwarf mutant and Ta-kcs5/cer60-like wax mutants deficient in the biosynthesis of long chain fatty acids were identified. Overall, these studies demonstrate that translational genomics can be used to promote the domestication of pennycress. Furthermore, the ease with which important findings could be made in pennycress makes this species a new potential model plant.


Asunto(s)
Arabidopsis/genética , Genes de Plantas/genética , Modelos Genéticos , Genética Inversa , Thlaspi/genética , Genes de Plantas/fisiología , Genoma de Planta/genética , Genómica , Mutación/genética , Genética Inversa/métodos
11.
Planta ; 250(1): 115-127, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30941570

RESUMEN

MAIN CONCLUSION: Nocturnal transpiration, through its circadian control, plays a role in modulating daytime transpiration response to increasing evaporative demand, to potentially enable drought tolerance in wheat. Limiting plant transpiration rate (TR) in response to increasing vapor pressure deficit (VPD) has been suggested to enable drought tolerance through water conservation. However, there is very little information on the extent of diversity of TR response curves to "true" VPD (i.e., independent from temperature). Furthermore, new evidence indicate that water-saving could operate by modulating nocturnal TR (TRN), and that this response might be coupled to daytime gas exchange. Based on 3 years of experimental data on a diverse group of 77 genotypes from 25 countries and 5 continents, a first goal of this study was to characterize the functional diversity in daytime TR responses to VPD and TRN in wheat. A second objective was to test the hypothesis that these traits could be coupled through the circadian clock. Using a new gravimetric phenotyping platform that allowed for independent temperature and VPD control, we identified three and fourfold variation in daytime and nighttime responses, respectively. In addition, TRN was found to be positively correlated with slopes of daytime TR responses to VPD, and we identified pre-dawn variation in TRN that likely mediated this relationship. Furthermore, pre-dawn increase in TRN positively correlated with the year of release among drought-tolerant Australian cultivars and with the VPD threshold at which they initiated water-saving. Overall, the study indicates a substantial diversity in TR responses to VPD that could be leveraged to enhance fitness under water-limited environments, and that TRN and its circadian control may play an important role in the expression of water-saving.


Asunto(s)
Relojes Circadianos/fisiología , Transpiración de Plantas/fisiología , Triticum/fisiología , Agua/metabolismo , Sequías , Genotipo , Fenotipo , Estomas de Plantas/genética , Estomas de Plantas/fisiología , Temperatura , Triticum/genética , Presión de Vapor
12.
Theor Appl Genet ; 132(9): 2689-2705, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31254024

RESUMEN

KEY MESSAGE: A high-resolution genetic map combined with haplotype analyses identified a wheat ortholog of rice gene APO1 as the best candidate gene for a 7AL locus affecting spikelet number per spike. A better understanding of the genes controlling differences in wheat grain yield components can accelerate the improvements required to satisfy future food demands. In this study, we identified a promising candidate gene underlying a quantitative trait locus (QTL) on wheat chromosome arm 7AL regulating spikelet number per spike (SNS). We used large heterogeneous inbred families ( > 10,000 plants) from two crosses to map the 7AL QTL to an 87-kb region (674,019,191-674,106,327 bp, RefSeq v1.0) containing two complete and two partial genes. In this region, we found three major haplotypes that were designated as H1, H2 and H3. The H2 haplotype contributed the high-SNS allele in both H1 × H2 and H2 × H3 segregating populations. The ancestral H3 haplotype is frequent in wild emmer (48%) but rare (~ 1%) in cultivated wheats. By contrast, the H1 and H2 haplotypes became predominant in modern cultivated durum and common wheat, respectively. Among the four candidate genes, only TraesCS7A02G481600 showed a non-synonymous polymorphism that differentiated H2 from the other two haplotypes. This gene, designated here as WHEAT ORTHOLOG OF APO1 (WAPO1), is an ortholog of the rice gene ABERRANT PANICLE ORGANIZATION 1 (APO1), which affects spikelet number. Taken together, the high-resolution genetic map, the association between polymorphisms in the different mapping populations with differences in SNS, and the known role of orthologous genes in other grass species suggest that WAPO-A1 is the most likely candidate gene for the 7AL SNS QTL among the four genes identified in the candidate gene region.


Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Marcadores Genéticos , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Triticum/crecimiento & desarrollo , Triticum/genética , Ligamiento Genético , Genotipo , Haplotipos , Fenotipo , Desarrollo de la Planta
13.
Phytopathology ; 109(11): 1932-1940, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31282284

RESUMEN

A previous genome-wide association study (GWAS) for leaf rust (caused by Puccinia triticina) resistance identified 46 resistance quantitative trait loci (QTL) in an elite spring wheat leaf rust resistance diversity panel. With the aim of characterizing the pleiotropic resistance sources to both leaf rust and stripe rust (caused by P. striiformis f. sp. tritici), stripe rust responses were tested in five U.S. environments at the adult-plant stage and to five U.S. races at the seedling stage. The data revealed balanced phenotypic distributions in this population except for the seedling response to P. striiformis f. sp. tritici race PSTv-37. GWAS for stripe rust resistance discovered a total of 21 QTL significantly associated with all-stage or field resistance on chromosomes 1B, 1D, 2B, 3B, 4A, 5A, 5B, 5D, 6A, 6B, 7A, and 7B. Previously documented pleiotropic resistance genes Yr18/Lr34 and Yr46/Lr67 and tightly linked genes Yr17-Lr37 and Yr30-Sr2-Lr27 were also detected in this population. In addition, stripe rust resistance QTL Yrswp-2B.1, Yrswp-3B, and Yrswp-7B colocated with leaf rust resistance loci 2B_3, 3B_t2, and 7B_4, respectively. Haplotype analysis uncovered that Yrswp-3B and 3B_t2 were either tightly linked genes or the same gene for resistance to both stripe and leaf rusts. Single nucleotide polymorphism markers IWB35950, IWB74350, and IWB72134 for the 3B QTL conferring resistance to both rusts should be useful in incorporating the resistance allele(s) in new cultivars.


Asunto(s)
Basidiomycota , Estudio de Asociación del Genoma Completo , Triticum , Basidiomycota/fisiología , Resistencia a la Enfermedad/genética , Fenotipo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Triticum/genética , Triticum/microbiología
14.
J Am Chem Soc ; 140(13): 4736-4742, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29553264

RESUMEN

Solid metal oxides for carbon capture exhibit reduced adsorption capacity following high-temperature exposure, due to surface area reduction by sintering. Furthermore, only low-coordinate corner/edge sites on the thermodynamically stable (100) facet display favorable binding toward CO2, providing inherently low capacity. The (111) facet, however, exhibits a high concentration of low-coordinate sites. In this work, MgO(111) nanosheets displayed high capacity for CO2, as well as a ∼65% increase in capacity despite a ∼30% reduction in surface area following sintering (0.77 mmol g-1 @ 227 m2 g-1 vs 1.28 mmol g-1 @ 154 m2 g-1). These results, unique to MgO(111), suggest intrinsic differences in the effects of sintering on basic site retention. Spectroscopic and computational investigations provided a new structure-activity insight: the importance of high-temperature activation to unleash the capacity of the polar (111) facet of MgO. In summary, we present the first example of a faceted sorbent for carbon capture and challenge the assumption that sintering is necessarily a negative process; here we leverage high-temperature conditions for facet-dependent surface activation.

15.
Philos Trans A Math Phys Eng Sci ; 376(2110)2018 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-29175869

RESUMEN

This review article provides an overview of activities in the rapidly developing field of water purification via photocatalytic methods and focuses on the removal of nitrate ions with simultaneous removal of the hole scavenger. Many of the issues associated with provision of potable water in the developing world may be resolved by the use of simple physical methodologies such as filtration. However, many of the issues associated with water purity in the developed world involve complex, stable molecules present at low concentrations that are nonetheless capable of producing toxic effects in plants and animals and that require more demanding removal technologies. Photocatalytic methods can be operated remotely and often show minimal production of undesired side products. Titania alone shows limitations, not only in terms of the slow rate of photoreduction of nitrate but also in terms of selectivity and the need to employ radiation in the UV region due to the magnitude of the band gap. Key challenges may be defined as: reducing the band gap/increasing absorption in the visible region, enhancing the adsorption capacity/access to the surface sites and reducing the rate of hole/electron recombination. The present article will focus on the use of titania-based materials that involve metal co-catalysts for nitrate reduction.This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'.

16.
Theor Appl Genet ; 130(2): 345-361, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27807611

RESUMEN

KEY MESSAGE: We identified 15 potentially novel loci in addition to previously characterized leaf rust resistance genes from 1032 spring wheat accessions. Targeted AM subset panels were instrumental in revealing interesting loci. Leaf rust is a common disease of wheat, consistently reducing yields in many wheat-growing regions of the world. Although fungicides are commonly applied to wheat in the United States (US), genetic resistance can provide less expensive, yet effective control of the disease. Our objectives were to map leaf rust resistance genes in a large core collection of spring wheat accessions selected from the United States Department of Agriculture-Agricultural Research Service National Small Grains Collection (NSGC), determine whether previously characterized race-nonspecific resistance genes could be identified with our panel, and evaluate the use of targeted panels to identify seedling and adult plant resistance (APR) genes. Association mapping (AM) detected five potentially novel leaf rust resistance loci on chromosomes 2BL, 4AS, and 5DL at the seedling stage, and 2DL and 7AS that conditioned both seedling and adult plant resistance. In addition, ten potentially novel race-nonspecific resistance loci conditioned field resistance and lacked seedling resistance. Analyses of targeted subsets of the accessions identified additional loci not associated with resistance in the complete core panel. Using molecular markers, we also confirmed the presence and effectiveness of the race-nonspecific genes Lr34, Lr46, and Lr67 in our panel. Although most of the accessions in this study were susceptible to leaf rust in field and seedling tests, many resistance loci were identified with AM. Through the use of targeted subset panels, more loci were identified than in the larger core panels alone.


Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Triticum/genética , Basidiomycota , Cromosomas de las Plantas , Genes de Plantas , Sitios Genéticos , Marcadores Genéticos , Técnicas de Genotipaje , Modelos Lineales , Desequilibrio de Ligamiento , Modelos Genéticos , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Triticum/microbiología
17.
Phytopathology ; 107(12): 1486-1495, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28703042

RESUMEN

Fusarium head blight (FHB) is a destructive disease of wheat in humid and semihumid areas of the world. It has emerged in the Pacific Northwest (PNW) in recent years because of changing climate and crop rotation practices. Our objectives in the present study were to identify and characterize quantitative trait loci (QTL) associated with FHB resistance in spring wheat lines developed in the PNW and the International Maize and Wheat Improvement Center. In total, 170 spring wheat lines were evaluated in field and greenhouse trials in 2015 and 2016. Fourteen lines showing consistent resistance in multiple environments were identified. These lines are valuable resources in wheat variety improvement of FHB resistance because they have no Sumai 3 or Sumai 3-related background. The 170 lines were genotyped using a high-density Illumina 90K single-nucleotide polymorphisms (SNP) assay and 10 other non-SNP markers. A genome-wide association analysis was conducted with a mixed model (Q+K). Consistent, significant SNP associations with multiple traits were found on chromosomes 1B, 2B, 4B, 5A, 5B, and 6A. The locus on chromosome 5B for reduced deoxynivalenol content may be novel. The identified QTL are being validated in additional mapping studies and the identified resistant lines are being used in variety development for FHB resistance and facilitated by marker-assisted selection.


Asunto(s)
Resistencia a la Enfermedad/genética , Fusarium/fisiología , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas/inmunología , Sitios de Carácter Cuantitativo/genética , Triticum/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Sitios Genéticos/genética , Genotipo , Noroeste de Estados Unidos , Fenotipo , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple/genética , Tricotecenos/metabolismo , Triticum/inmunología , Triticum/microbiología
19.
Angew Chem Int Ed Engl ; 56(20): 5579-5583, 2017 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-28402590

RESUMEN

Non-thermal plasma activation has been used to enable low-temperature water-gas shift over a Au/CeZrO4 catalyst. The activity obtained was comparable with that attained by heating the catalyst to 180 °C providing an opportunity for the hydrogen production to be obtained under conditions where the thermodynamic limitations are minimal. Using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), structural changes associated with the gold nanoparticles in the catalyst have been observed which are not found under thermal activation indicating a weakening of the Au-CO bond and a change in the mechanism of deactivation.

20.
Nat Methods ; 10(9): 843-5, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23985730

RESUMEN

Optimism about biomedicine is challenged by the increasingly complex ethical, legal and social issues it raises. Reporting of scientific methods is no longer sufficient to address the complex relationship between science and society. To promote 'ethical reproducibility', we call for transparent reporting of research ethics methods used in biomedical research.


Asunto(s)
Investigación Biomédica/ética , Ética en Investigación , Guías como Asunto , Edición , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA