Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(45): e2208703119, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36282902

RESUMEN

The world's oceans are currently facing major stressors in the form of overexploitation and anthropogenic climate change. The Baltic Sea was home to the first "industrial" fishery ∼800 y ago targeting the Baltic herring, a species that is still economically and culturally important today. Yet, the early origins of marine industries and the long-term ecological consequences of historical and contemporary fisheries remain debated. Here, we study long-term population dynamics of Baltic herring to evaluate the past impacts of humans on the marine environment. We combine modern whole-genome data with ancient DNA (aDNA) to identify the earliest-known long-distance herring trade in the region, illustrating that extensive fish trade began during the Viking Age. We further resolve population structure within the Baltic and observe demographic independence for four local herring stocks over at least 200 generations. It has been suggested that overfishing at Øresund in the 16th century resulted in a demographic shift from autumn-spawning to spring-spawning herring dominance in the Baltic. We show that while the Øresund fishery had a negative impact on the western Baltic herring stock, the demographic shift to spring-spawning dominance did not occur until the 20th century. Instead, demographic reconstructions reveal population trajectories consistent with expected impacts of environmental change and historical reports on shifting fishing targets over time. This study illustrates the joint impact of climate change and human exploitation on marine species as well as the role historical ecology can play in conservation and management policies.


Asunto(s)
ADN Antiguo , Explotaciones Pesqueras , Animales , Humanos , Conservación de los Recursos Naturales , Dinámica Poblacional , Peces/genética , Genómica , Países Bálticos
2.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35165196

RESUMEN

Life on Earth has been characterized by recurring cycles of ecological stasis and disruption, relating biological eras to geological and climatic transitions through the history of our planet. Due to the increasing degree of ecological abruption caused by human influences many advocate that we now have entered the geological era of the Anthropocene, or "the age of man." Considering the ongoing mass extinction and ecosystem reshuffling observed worldwide, a better understanding of the drivers of ecological stasis will be a requisite for identifying routes of intervention and mitigation. Ecosystem stability may rely on one or a few keystone species, and the loss of such species could potentially have detrimental effects. The Atlantic cod (Gadus morhua) has historically been highly abundant and is considered a keystone species in ecosystems of the northern Atlantic Ocean. Collapses of cod stocks have been observed on both sides of the Atlantic and reported to have detrimental effects that include vast ecosystem reshuffling. By whole-genome resequencing we demonstrate that stabilizing selection maintains three extensive "supergenes" in Atlantic cod, linking these genes to species persistence and ecological stasis. Genomic inference of historic effective population sizes shows continued declines for cod in the North Sea-Skagerrak-Kattegat system through the past millennia, consistent with an early onset of the marine Anthropocene through industrialization and commercialization of fisheries throughout the medieval period.


Asunto(s)
Acuicultura/métodos , Conservación de los Recursos Naturales/métodos , Gadus morhua/genética , Animales , Océano Atlántico , Ecosistema , Explotaciones Pesqueras , Gadus morhua/crecimiento & desarrollo , Genoma , Genómica , Humanos , Mar del Norte , Dinámica Poblacional
3.
Environ Microbiol ; 25(9): 1659-1673, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37032322

RESUMEN

Sandy beaches are biogeochemical hotspots that bridge marine and terrestrial ecosystems via the transfer of organic matter, such as seaweed (termed wrack). A keystone of this unique ecosystem is the microbial community, which helps to degrade wrack and re-mineralize nutrients. However, little is known about this community. Here, we characterize the wrackbed microbiome as well as the microbiome of a primary consumer, the seaweed fly Coelopa frigida, and examine how they change along one of the most studied ecological gradients in the world, the transition from the marine North Sea to the brackish Baltic Sea. We found that polysaccharide degraders dominated both microbiomes, but there were still consistent differences between wrackbed and fly samples. Furthermore, we observed a shift in both microbial communities and functionality between the North and Baltic Sea driven by changes in the frequency of different groups of known polysaccharide degraders. We hypothesize that microbes were selected for their abilities to degrade different polysaccharides corresponding to a shift in polysaccharide content in the different seaweed communities. Our results reveal the complexities of both the wrackbed microbial community, with different groups specialized to different roles, and the cascading trophic consequences of shifts in the near shore algal community.


Asunto(s)
Ecosistema , Microbiota , Mar del Norte , Filogeografía , Microbiota/genética , Países Bálticos
4.
Mol Ecol ; 31(9): 2562-2577, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35229385

RESUMEN

Gene flow shapes spatial genetic structure and the potential for local adaptation. Among marine animals with nonmigratory adults, the presence or absence of a pelagic larval stage is thought to be a key determinant in shaping gene flow and the genetic structure of populations. In addition, the spatial distribution of suitable habitats is expected to influence the distribution of biological populations and their connectivity patterns. We used whole genome sequencing to study demographic history and reduced representation (double-digest restriction associated DNA) sequencing data to analyse spatial genetic structure in broadnosed pipefish (Syngnathus typhle). Its main habitat is eelgrass beds, which are patchily distributed along the study area in southern Norway. Demographic connectivity among populations was inferred from long-term (~30-year) population counts that uncovered a rapid decline in spatial correlations in abundance with distance as short as ~2 km. These findings were contrasted with data for two other fish species that have a pelagic larval stage (corkwing wrasse, Symphodus melops; black goby, Gobius niger). For these latter species, we found wider spatial scales of connectivity and weaker genetic isolation-by-distance patterns, except where both species experienced a strong barrier to gene flow, seemingly due to lack of suitable habitat. Our findings verify expectations that a fragmented habitat and absence of a pelagic larval stage promote genetic structure, while presence of a pelagic larvae stage increases demographic connectivity and gene flow, except perhaps over extensive habitat gaps.


Asunto(s)
Metagenómica , Perciformes , Animales , Demografía , Ecosistema , Peces/genética , Larva/genética , Perciformes/genética
5.
J Evol Biol ; 34(1): 138-156, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32573797

RESUMEN

Studies of colonization of new habitats that appear from rapidly changing environments are interesting and highly relevant to our understanding of divergence and speciation. Here, we analyse phenotypic and genetic variation involved in the successful establishment of a marine fish (sand goby, Pomatoschistus minutus) over a steep salinity drop from 35 PSU in the North Sea (NE Atlantic) to two PSU in the inner parts of the post-glacial Baltic Sea. We first show that populations are adapted to local salinity in a key reproductive trait, the proportion of motile sperm. Thereafter, we show that genome variation at 22,190 single nucleotide polymorphisms (SNPs) shows strong differentiation among populations along the gradient. Sequences containing outlier SNPs and transcriptome sequences, mapped to a draft genome, reveal associations with genes with relevant functions for adaptation in this environment but without overall evidence of functional enrichment. The many contigs involved suggest polygenic differentiation. We trace the origin of this differentiation using demographic modelling and find the most likely scenario is that at least part of the genetic differentiation is older than the Baltic Sea and is a result of isolation of two lineages prior to the current contact over the North Sea-Baltic Sea transition zone.


Asunto(s)
Adaptación Biológica/genética , Evolución Biológica , Perciformes/genética , Salinidad , Motilidad Espermática , Animales , Océano Atlántico , Femenino , Variación Genética , Genoma , Masculino
6.
Mol Ecol ; 29(1): 160-171, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31733084

RESUMEN

Understanding the biological processes involved in genetic differentiation and divergence between populations within species is a pivotal aim in evolutionary biology. One particular phenomenon that requires clarification is the maintenance of genetic barriers despite the high potential for gene flow in the marine environment. Such patterns have been attributed to limited dispersal or local adaptation, and to a lesser extent to the demographic history of the species. The corkwing wrasse (Symphodus melops) is an example of a marine fish species where regions of particular strong divergence are observed. One such genetic break occurred at a surprisingly small spatial scale (FST ~0.1), over a short coastline (<60 km) in the North Sea-Skagerrak transition area in southwestern Norway. Here, we investigate the observed divergence and purported reproductive isolation using genome resequencing. Our results suggest that historical events during the post-glacial recolonization route can explain the present population structure of the corkwing wrasse in the northeast Atlantic. While the divergence across the break is strong, we detected ongoing gene flow between populations over the break suggesting recent contact or negative selection against hybrids. Moreover, we found few outlier loci and no clear genomic regions potentially being under selection. We concluded that neutral processes and random genetic drift e.g., due to founder events during colonization have shaped the population structure in this species in Northern Europe. Our findings underline the need to take into account the demographic process in studies of divergence processes.


Asunto(s)
Peces/genética , Flujo Génico , Flujo Genético , Genoma/genética , Aislamiento Reproductivo , Animales , Demografía , Ecología , Europa (Continente) , Femenino , Peces/fisiología , Masculino
7.
BMC Genet ; 21(1): 118, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-33036553

RESUMEN

BACKGROUND: Marine fish populations are often characterized by high levels of gene flow and correspondingly low genetic divergence. This presents a challenge to define management units. Goldsinny wrasse (Ctenolabrus rupestris) is a heavily exploited species due to its importance as a cleaner-fish in commercial salmonid aquaculture. However, at the present, the population genetic structure of this species is still largely unresolved. Here, full-genome sequencing was used to produce the first genomic reference for this species, to study population-genomic divergence among four geographically distinct populations, and, to identify informative SNP markers for future studies. RESULTS: After construction of a de novo assembly, the genome was estimated to be highly polymorphic and of ~600Mbp in size. 33,235 SNPs were thereafter selected to assess genomic diversity and differentiation among four populations collected from Scandinavia, Scotland, and Spain. Global FST among these populations was 0.015-0.092. Approximately 4% of the investigated loci were identified as putative global outliers, and ~ 1% within Scandinavia. SNPs showing large divergence (FST > 0.15) were picked as candidate diagnostic markers for population assignment. One hundred seventy-three of the most diagnostic SNPs between the two Scandinavian populations were validated by genotyping 47 individuals from each end of the species' Scandinavian distribution range. Sixty-nine of these SNPs were significantly (p < 0.05) differentiated (mean FST_173_loci = 0.065, FST_69_loci = 0.140). Using these validated SNPs, individuals were assigned with high probability (≥ 94%) to their populations of origin. CONCLUSIONS: Goldsinny wrasse displays a highly polymorphic genome, and substantial population genomic structure. Diversifying selection likely affects population structuring globally and within Scandinavia. The diagnostic loci identified now provide a promising and cost-efficient tool to investigate goldsinny wrasse populations further.


Asunto(s)
Flujo Genético , Genética de Población , Perciformes/genética , Polimorfismo de Nucleótido Simple , Animales , Genoma , Países Escandinavos y Nórdicos , Escocia , España
8.
Proc Natl Acad Sci U S A ; 114(34): 9152-9157, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28784790

RESUMEN

Knowledge of the range and chronology of historic trade and long-distance transport of natural resources is essential for determining the impacts of past human activities on marine environments. However, the specific biological sources of imported fauna are often difficult to identify, in particular if species have a wide spatial distribution and lack clear osteological or isotopic differentiation between populations. Here, we report that ancient fish-bone remains, despite being porous, brittle, and light, provide an excellent source of endogenous DNA (15-46%) of sufficient quality for whole-genome reconstruction. By comparing ancient sequence data to that of modern specimens, we determine the biological origin of 15 Viking Age (800-1066 CE) and subsequent medieval (1066-1280 CE) Atlantic cod (Gadus morhua) specimens from excavation sites in Germany, Norway, and the United Kingdom. Archaeological context indicates that one of these sites was a fishing settlement for the procurement of local catches, whereas the other localities were centers of trade. Fish from the trade sites show a mixed ancestry and are statistically differentiated from local fish populations. Moreover, Viking Age samples from Haithabu, Germany, are traced back to the North East Arctic Atlantic cod population that has supported the Lofoten fisheries of Norway for centuries. Our results resolve a long-standing controversial hypothesis and indicate that the marine resources of the North Atlantic Ocean were used to sustain an international demand for protein as far back as the Viking Age.


Asunto(s)
ADN Antiguo/análisis , Ecosistema , Explotaciones Pesqueras/historia , Gadus morhua/genética , Animales , Regiones Árticas , Océano Atlántico , Huesos/metabolismo , ADN Antiguo/aislamiento & purificación , Fósiles , Geografía , Alemania , Historia Medieval , Noruega , Reino Unido
9.
Mol Ecol ; 28(6): 1394-1411, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30633410

RESUMEN

Genetic divergence among populations arises through natural selection or drift and is counteracted by connectivity and gene flow. In sympatric populations, isolating mechanisms are thus needed to limit the homogenizing effects of gene flow to allow for adaptation and speciation. Chromosomal inversions act as an important mechanism maintaining isolating barriers, yet their role in sympatric populations and divergence with gene flow is not entirely understood. Here, we revisit the question of whether inversions play a role in the divergence of connected populations of the marine fish Atlantic cod (Gadus morhua), by exploring a unique data set combining whole-genome sequencing data and behavioural data obtained with acoustic telemetry. Within a confined fjord environment, we find three genetically differentiated Atlantic cod types belonging to the oceanic North Sea population, the western Baltic population and a local fjord-type cod. Continuous behavioural tracking over 4 year revealed temporally stable sympatry of these types within the fjord. Despite overall weak genetic differentiation consistent with high levels of gene flow, we detected significant frequency shifts of three previously identified inversions, indicating an adaptive barrier to gene flow. In addition, behavioural data indicated that North Sea cod and individuals homozygous for the LG12 inversion had lower fitness in the fjord environment. However, North Sea and fjord-type cod also occupy different depths, possibly contributing to prezygotic reproductive isolation and representing a behavioural barrier to gene flow. Our results provide the first insights into a complex interplay of genomic and behavioural isolating barriers in Atlantic cod and establish a new model system towards an understanding of the role of genomic structural variants in adaptation and diversification.


Asunto(s)
Inversión Cromosómica/genética , Gadus morhua/genética , Flujo Génico/genética , Selección Genética/genética , Animales , Flujo Genético , Aptitud Genética/fisiología , Variación Genética/genética , Homocigoto , Aislamiento Reproductivo , Simpatría/genética
10.
Genomics ; 110(6): 399-403, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29665418

RESUMEN

The wrasses (Labridae) are one of the most successful and species-rich families of the Perciformes order of teleost fish. Its members display great morphological diversity, and occupy distinct trophic levels in coastal waters and coral reefs. The cleaning behaviour displayed by some wrasses, such as corkwing wrasse (Symphodus melops), is of particular interest for the salmon aquaculture industry to combat and control sea lice infestation as an alternative to chemicals and pharmaceuticals. There are still few genome assemblies available within this fish family for comparative and functional studies, despite the rapid increase in genome resources generated during the past years. Here, we present a highly continuous genome assembly of the corkwing wrasse using PacBio SMRT sequencing (x28.8) followed by error correction with paired-end Illumina data (x132.9). The present genome assembly consists of 5040 contigs (N50 = 461,652 bp) and a total size of 614 Mbp, of which 8.5% of the genome sequence encode known repeated elements. The genome assembly covers 94.21% of highly conserved genes across ray-finned fish species. We find evidence for increased copy numbers specific for corkwing wrasse possibly highlighting diversification and adaptive processes in gene families including N-linked glycosylation (ST8SIA6) and stress response kinases (HIPK1). By comparative analyses, we discover that de novo repeats, often not properly investigated during genome annotation, encode hundreds of immune-related genes. This new genomic resource, together with the ballan wrasse (Labrus bergylta), will allow for in-depth comparative genomics as well as population genetic analyses for the understudied wrasses.


Asunto(s)
Genética de Población , Genoma , Perciformes/genética , Animales , Masculino , Análisis de Secuencia de ADN
11.
Mol Ecol ; 26(17): 4452-4466, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28626905

RESUMEN

Adaptation to local conditions is a fundamental process in evolution; however, mechanisms maintaining local adaptation despite high gene flow are still poorly understood. Marine ecosystems provide a wide array of diverse habitats that frequently promote ecological adaptation even in species characterized by strong levels of gene flow. As one example, populations of the marine fish Atlantic cod (Gadus morhua) are highly connected due to immense dispersal capabilities but nevertheless show local adaptation in several key traits. By combining population genomic analyses based on 12K single nucleotide polymorphisms with larval dispersal patterns inferred using a biophysical ocean model, we show that Atlantic cod individuals residing in sheltered estuarine habitats of Scandinavian fjords mainly belong to offshore oceanic populations with considerable connectivity between these diverse ecosystems. Nevertheless, we also find evidence for discrete fjord populations that are genetically differentiated from offshore populations, indicative of local adaptation, the degree of which appears to be influenced by connectivity. Analyses of the genomic architecture reveal a significant overrepresentation of a large ~5 Mb chromosomal rearrangement in fjord cod, previously proposed to comprise genes critical for the survival at low salinities. This suggests that despite considerable connectivity with offshore populations, local adaptation to fjord environments may be enabled by suppression of recombination in the rearranged region. Our study provides new insights into the potential of local adaptation in high gene flow species within fine geographical scales and highlights the importance of genome architecture in analyses of ecological adaptation.


Asunto(s)
Adaptación Fisiológica/genética , Ecosistema , Gadus morhua/genética , Flujo Génico , Animales , Océano Atlántico , Estuarios , Reordenamiento Génico , Genoma , Polimorfismo de Nucleótido Simple , Países Escandinavos y Nórdicos
12.
Subcell Biochem ; 86: 207-21, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27023237

RESUMEN

Eukaryotic cells are characterized by compartmentalization and specialization of metabolism within membrane-bound organelles. Nevertheless, many fundamental processes extend across multiple subcellular compartments. Here, we describe and assess the pathways and cellular organization of triacylglycerol biosynthesis in microalgae. In particular, we emphases the dynamic interplay among the endoplasmic reticulum, lipid droplets and chloroplasts in acyl remodeling and triacylglycerol accumulation under nitrogen starvation in the model alga Chlamydomonas reinhardtii.


Asunto(s)
Microalgas/metabolismo , Triglicéridos/biosíntesis , Acilcoenzima A/metabolismo , Diglicéridos/biosíntesis , Fracciones Subcelulares/metabolismo , Triglicéridos/metabolismo
13.
Mol Ecol ; 25(1): 287-305, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-26222268

RESUMEN

Parallel speciation occurs when selection drives repeated, independent adaptive divergence that reduces gene flow between ecotypes. Classical examples show parallel speciation originating from shared genomic variation, but this does not seem to be the case in the rough periwinkle (Littorina saxatilis) that has evolved considerable phenotypic diversity across Europe, including several distinct ecotypes. Small 'wave' ecotype snails inhabit exposed rocks and experience strong wave action, while thick-shelled, 'crab' ecotype snails are larger and experience crab predation on less exposed shores. Crab and wave ecotypes appear to have arisen in parallel, and recent evidence suggests only marginal sharing of molecular variation linked to evolution of similar ecotypes in different parts of Europe. However, the extent of genomic sharing is expected to increase with gene flow and more recent common ancestry. To test this, we used de novo RAD-sequencing to quantify the extent of shared genomic divergence associated with phenotypic similarities amongst ecotype pairs on three close islands (<10 km distance) connected by weak gene flow (Nm ~ 0.03) and with recent common ancestry (<10 000 years). After accounting for technical issues, including a large proportion of null alleles due to a large effective population size, we found ~8-28% of positive outliers were shared between two islands and ~2-9% were shared amongst all three islands. This low level of sharing suggests that parallel phenotypic divergence in this system is not matched by shared genomic divergence despite a high probability of gene flow and standing genetic variation.


Asunto(s)
Ecotipo , Flujo Génico , Especiación Genética , Genética de Población , Caracoles/genética , Alelos , Animales , Mapeo Contig , Sitios Genéticos , Haplotipos , Islas , Desequilibrio de Ligamiento , Fenotipo , Selección Genética , Análisis de Secuencia de ADN , Suecia
14.
Proc Natl Acad Sci U S A ; 110(8): 3191-6, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23391732

RESUMEN

Biologically produced alkanes represent potential renewable alternatives to petroleum-derived chemicals. A cyanobacterial pathway consisting of acyl-Acyl Carrier Protein reductase and an aldehyde-deformylating oxygenase (ADO) converts acyl-Acyl Carrier Proteins into corresponding n-1 alkanes via aldehyde intermediates in an oxygen-dependent manner (K(m) for O(2), 84 ± 9 µM). In vitro, ADO turned over only three times, but addition of more ADO to exhausted assays resulted in additional product formation. While evaluating the peroxide shunt to drive ADO catalysis, we discovered that ADO is inhibited by hydrogen peroxide (H(2)O(2)) with an apparent K(i) of 16 ± 6 µM and that H(2)O(2) inhibition is of mixed-type with respect to O(2). Supplementing exhausted assays with catalase (CAT) restored ADO activity, demonstrating that inhibition was reversible and dependent on H(2)O(2), which originated from poor coupling of reductant consumption with alkane formation. Kinetic analysis showed that long-chain (C14-C18) substrates follow Michaelis-Menten kinetics, whereas short and medium chains (C8-C12) exhibit substrate inhibition. A bifunctional protein comprising an N-terminal CAT coupled to a C-terminal ADO (CAT-ADO) prevents H(2)O(2) inhibition by converting it to the cosubstrate O(2). Indeed, alkane production by the fusion protein is observed upon addition of H(2)O(2) to an anaerobic reaction mix. In assays, CAT-ADO turns over 225 times versus three times for the native ADO, and its expression in Escherichia coli increases catalytic turnovers per active site by fivefold relative to the expression of native ADO. We propose the term "protection via inhibitor metabolism" for fusion proteins designed to metabolize inhibitors into noninhibitory compounds.


Asunto(s)
Catalasa/metabolismo , Enzimas/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxígeno/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Cartilla de ADN , Datos de Secuencia Molecular
15.
Mol Ecol ; 24(8): 1742-57, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25782085

RESUMEN

The large-scale population genetic structure of northern shrimp, Pandalus borealis, was investigated over the species' range in the North Atlantic, identifying multiple genetically distinct groups. Genetic divergence among sample localities varied among 10 microsatellite loci (range: FST = -0.0002 to 0.0475) with a highly significant average (FST = 0.0149; P < 0.0001). In contrast, little or no genetic differences were observed among temporal replicates from the same localities (FST = 0.0004; P = 0.33). Spatial genetic patterns were compared to geographic distances, patterns of larval drift obtained through oceanographic modelling, and temperature differences, within a multiple linear regression framework. The best-fit model included all three factors and explained approximately 29% of all spatial genetic divergence. However, geographic distance and larval drift alone had only minor effects (2.5-4.7%) on large-scale genetic differentiation patterns, whereas bottom temperature differences explained most (26%). Larval drift was found to promote genetic homogeneity in parts of the study area with strong currents, but appeared ineffective across large temperature gradients. These findings highlight the breakdown of gene flow in a species with a long pelagic larval phase (up to 3 months) and indicate a role for local adaptation to temperature conditions in promoting evolutionary diversification and speciation in the marine environment.


Asunto(s)
Adaptación Fisiológica/genética , Genética de Población , Pandalidae/clasificación , Temperatura , Distribución Animal , Animales , Océano Atlántico , Flujo Génico , Repeticiones de Microsatélite , Modelos Genéticos , Modelos Estadísticos
16.
Proc Natl Acad Sci U S A ; 109(25): 10107-12, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-22665812

RESUMEN

Plant seed oil represents a major renewable source of reduced carbon, but little is known about the biochemical regulation of its synthesis. The goal of this research was to identify potential feedback regulation of fatty acid biosynthesis in Brassica napus embryo-derived cell cultures and to characterize both the feedback signals and enzymatic targets of the inhibition. Fatty acids delivered via Tween esters rapidly reduced the rate of fatty acid synthesis in a dose-dependent and reversible manner, demonstrating the existence of feedback inhibition in an oil-accumulating tissue. Tween feeding did not affect fatty acid elongation in the cytosol or the incorporation of radiolabeled malonate into nascent fatty acids, which together pinpoint plastidic acetyl-CoA carboxylase (ACCase) as the enzymatic target of feedback inhibition. To identify the signal responsible for feedback, a variety of Tween esters were tested for their effects on the rate of fatty acid synthesis. Maximum inhibition was achieved upon feeding oleic acid (18:1) Tween esters that resulted in the intracellular accumulation of 18:1 free fatty acid, 18:1-CoA, and 18:1-acyl-carrier protein (ACP). Direct, saturable inhibition of ACCase enzyme activity was observed in culture extracts and in extracts of developing canola seeds supplemented with 18:1-ACP at physiological concentrations. A mechanism for feedback inhibition is proposed in which reduced demand for de novo fatty acids results in the accumulation of 18:1-ACP, which directly inhibits plastidic ACCase, leading to reduced fatty acid synthesis. Defining this mechanism presents an opportunity for mitigating feedback inhibition of fatty acid synthesis in crop plants to increase oil yield.


Asunto(s)
Acetil-CoA Carboxilasa/metabolismo , Proteína Transportadora de Acilo/metabolismo , Brassica napus/metabolismo , Retroalimentación , Proteínas de Plantas/metabolismo , Plastidios/enzimología , Brassica napus/enzimología
17.
BMC Evol Biol ; 14: 156, 2014 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-25038588

RESUMEN

BACKGROUND: Salinity plays an important role in shaping coastal marine communities. Near-future climate predictions indicate that salinity will decrease in many shallow coastal areas due to increased precipitation; however, few studies have addressed this issue. The ability of ecosystems to cope with future changes will depend on species' capacities to acclimatise or adapt to new environmental conditions. Here, we investigated the effects of a strong salinity gradient (the Baltic Sea system--Baltic, Kattegat, Skagerrak) on plasticity and adaptations in the euryhaline barnacle Balanus improvisus. We used a common-garden approach, where multiple batches of newly settled barnacles from each of three different geographical areas along the Skagerrak-Baltic salinity gradient were exposed to corresponding native salinities (6, 15 and 30 PSU), and phenotypic traits including mortality, growth, shell strength, condition index and reproductive maturity were recorded. RESULTS: We found that B. improvisus was highly euryhaline, but had highest growth and reproductive maturity at intermediate salinities. We also found that low salinity had negative effects on other fitness-related traits including initial growth and shell strength, although mortality was also lowest in low salinity. Overall, differences between populations in most measured traits were weak, indicating little local adaptation to salinity. Nonetheless, we observed some population-specific responses--notably that populations from high salinity grew stronger shells in their native salinity compared to the other populations, possibly indicating adaptation to differences in local predation pressure. CONCLUSIONS: Our study shows that B. improvisus is an example of a true brackish-water species, and that plastic responses are more likely than evolutionary tracking in coping with future changes in coastal salinity.


Asunto(s)
Exoesqueleto/fisiología , Agua de Mar/química , Thoracica/fisiología , Aclimatación , Adaptación Fisiológica , Exoesqueleto/química , Animales , Ecosistema , Océanos y Mares , Fenotipo , Reproducción , Salinidad , Thoracica/crecimiento & desarrollo
18.
BMC Evol Biol ; 14(1): 54, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24655798

RESUMEN

BACKGROUND: Functionality of the tetrameric hemoglobin molecule seems to be determined by a few amino acids located in key positions. Oxygen binding encompasses structural changes at the interfaces between the α1ß2 and α2ß1 dimers, but also subunit interactions are important for the oxygen binding affinity and stability. The latter packing contacts include the conserved Arg B12 interacting with Phe GH5, which is replaced by Leu and Tyr in the αA and αD chains, respectively, of birds and reptiles. RESULTS: Searching all known hemoglobins from a variety of gnathostome species (jawed vertebrates) revealed the almost invariant Arg B12 coded by the AGG triplet positioned at an exon-intron boundary. Rare substitutions of Arg B12 in the gnathostome ß globins were found in pig, tree shrew and scaled reptiles. Phe GH5 is also highly conserved in the ß globins, except for the Leu replacement in the ß1 globin of five marine gadoid species, gilthead seabream and the Comoran coelacanth, while Cys and Ile were found in burbot and yellow croaker, respectively. Atlantic cod ß1 globin showed a Leu/Met polymorphism at position GH5 dominated by the Met variant in northwest-Atlantic populations that was rarely found in northeast-Atlantic cod. Site-specific analyses identified six consensus codons under positive selection, including 122ß(GH5), indicating that the amino acid changes identified at this position may offer an adaptive advantage. In fact, computational mutation analysis showed that the replacement of Phe GH5 with Leu or Cys decreased the number of van der Waals contacts essentially in the deoxy form that probably causes a slight increase in the oxygen binding affinity. CONCLUSIONS: The almost invariant Arg B12 and the AGG codon seem to be important for the packing contacts and pre-mRNA processing, respectively, but the rare mutations identified might be beneficial. The Leu122ß1(GH5)Met and Met55ß1(D6)Val polymorphisms in Atlantic cod hemoglobin modify the intradimer contacts B12-GH5 and H2-D6, while amino acid replacements at these positions in avian hemoglobin seem to be evolutionary adaptive in air-breathing vertebrates. The results support the theory that adaptive changes in hemoglobin functions are caused by a few substitutions at key positions.


Asunto(s)
Sustitución de Aminoácidos , Evolución Molecular , Peces/genética , Hemoglobinas/genética , Animales , Análisis Mutacional de ADN , Gadus morhua/genética , Hemoglobinas/química , Modelos Moleculares , Filogenia , Polimorfismo Genético , Multimerización de Proteína , Precursores del ARN/genética , Selección Genética , Vertebrados/genética
19.
BMC Genomics ; 15: 687, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-25135785

RESUMEN

BACKGROUND: Array comparative genomic hybridization (aCGH) is commonly used to screen different types of genetic variation in humans and model species. Here, we performed aCGH using an oligonucleotide gene-expression array for a non-model species, the intertidal snail Littorina saxatilis. First, we tested what types of genetic variation can be detected by this method using direct re-sequencing and comparison to the Littorina genome draft. Secondly, we performed a genome-wide comparison of four closely related Littorina species: L. fabalis, L. compressa, L. arcana and L. saxatilis and of populations of L. saxatilis found in Spain, Britain and Sweden. Finally, we tested whether we could identify genetic variation underlying "Crab" and "Wave" ecotypes of L. saxatilis. RESULTS: We could reliably detect copy number variations, deletions and high sequence divergence (i.e. above 3%), but not single nucleotide polymorphisms. The overall hybridization pattern and number of significantly diverged genes were in close agreement with earlier phylogenetic reconstructions based on single genes. The trichotomy of L. arcana, L. compressa and L. saxatilis could not be resolved and we argue that these divergence events have occurred recently and very close in time. We found evidence for high levels of segmental duplication in the Littorina genome (10% of the transcripts represented on the array and up to 23% of the analyzed genomic fragments); duplicated genes and regions were mostly the same in all analyzed species. Finally, this method discriminated geographically distant populations of L. saxatilis, but we did not detect any significant genome divergence associated with ecotypes of L. saxatilis. CONCLUSIONS: The present study provides new information on the sensitivity and the potential use of oligonucleotide arrays for genotyping of non-model organisms. Applying this method to Littorina species yields insights into genome evolution following the recent species radiation and supports earlier single-gene based phylogenies. Genetic differentiation of L. saxatilis ecotypes was not detected in this study, despite pronounced innate phenotypic differences. The reason may be that these differences are due to single-nucleotide polymorphisms.


Asunto(s)
Caracoles/genética , Animales , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN , Evolución Molecular , Femenino , Duplicación de Gen , Especiación Genética , Variación Genética , Genoma , Técnicas de Genotipaje , Filogenia , Polimorfismo de Nucleótido Simple
20.
Evol Appl ; 17(5): e13704, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38770102

RESUMEN

Knowledge of functional dispersal barriers in the marine environment can be used to inform a wide variety of management actions, such as marine spatial planning, restoration efforts, fisheries regulations, and invasive species management. Locations and causes of dispersal barriers can be studied through various methods, including movement tracking, biophysical modeling, demographic models, and genetics. Combining methods illustrating potential dispersal, such as biophysical modeling, with realized dispersal through, e.g., genetic connectivity estimates, provides particularly useful information for teasing apart potential causes of observed barriers. In this study, we focus on blue mussels (Mytilus edulis) in the Skagerrak-a marginal sea connected to the North Sea in Northern Europe-and combine biophysical models of larval dispersal with genomic data to infer locations and causes of dispersal barriers in the area. Results from both methods agree; patterns of ocean currents are a major structuring factor in the area. We find a complex pattern of source-sink dynamics with several dispersal barriers and show that some areas can be isolated despite an overall high dispersal capability. Finally, we translate our finding into management advice that can be used to sustainably manage this ecologically and economically important species in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA