Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Immunity ; 48(3): 453-473, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29562195

RESUMEN

Most studies on the immunotherapeutic potential of T cells have focused on CD8 and CD4 T cells that recognize peptide antigens (Ag) presented by polymorphic major histocompatibility complex (MHC) class I and MHC class II molecules, respectively. However, unconventional T cells, which interact with MHC class Ib and MHC-I like molecules, are also implicated in tumor immunity, although their role therein is unclear. These include unconventional T cells targeting MHC class Ib molecules such as HLA-E and its murine ortholog Qa-1b, natural killer T (NKT) cells, mucosal associated invariant T (MAIT) cells, and γδ T cells. Here, we review the current understanding of the roles of these unconventional T cells in tumor immunity and discuss why further studies into the immunotherapeutic potential of these cells is warranted.


Asunto(s)
Inmunoterapia , Terapia Molecular Dirigida , Neoplasias/inmunología , Neoplasias/terapia , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Biomarcadores , Estudios Clínicos como Asunto , Terapia Combinada , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antígenos de Histocompatibilidad/inmunología , Antígenos de Histocompatibilidad/metabolismo , Humanos , Inmunomodulación/efectos de los fármacos , Neoplasias/metabolismo , Transducción de Señal/efectos de los fármacos , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T/efectos de los fármacos , Resultado del Tratamiento
2.
Nat Immunol ; 15(5): 431-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24658051

RESUMEN

CD96, CD226 (DNAM-1) and TIGIT belong to an emerging family of receptors that interact with nectin and nectin-like proteins. CD226 activates natural killer (NK) cell-mediated cytotoxicity, whereas TIGIT reportedly counterbalances CD226. In contrast, the role of CD96, which shares the ligand CD155 with CD226 and TIGIT, has remained unclear. In this study we found that CD96 competed with CD226 for CD155 binding and limited NK cell function by direct inhibition. As a result, Cd96(-/-) mice displayed hyperinflammatory responses to the bacterial product lipopolysaccharide (LPS) and resistance to carcinogenesis and experimental lung metastases. Our data provide the first description, to our knowledge, of the ability of CD96 to negatively control cytokine responses by NK cells. Blocking CD96 may have applications in pathologies in which NK cells are important.


Asunto(s)
Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Células Asesinas Naturales/inmunología , Receptores Inmunológicos/metabolismo , Animales , Antígenos CD/genética , Antígenos de Diferenciación de Linfocitos T/genética , Moléculas de Adhesión Celular/metabolismo , Células Cultivadas , Citotoxicidad Inmunológica/genética , Lipopolisacáridos/inmunología , Neoplasias Pulmonares/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nectinas , Metástasis de la Neoplasia , Neoplasias Experimentales/inmunología , Neumonía/inmunología , Unión Proteica/genética , Receptores Virales/metabolismo
3.
Nat Immunol ; 13(12): 1171-7, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23142773

RESUMEN

The development and function of natural killer (NK) cells is regulated by the interaction of inhibitory receptors of the Ly49 family with distinct peptide-laden major histocompatibility complex (MHC) class I molecules, although whether the Ly49 family is able bind to other MHC class I-like molecules is unclear. Here we found that the prototypic inhibitory receptor Ly49A bound the highly conserved nonclassical MHC class I molecule H2-M3 with an affinity similar to its affinity for H-2D(d). The specific recognition of H2-M3 by Ly49A regulated the 'licensing' of NK cells and mediated 'missing-self' recognition of H2-M3-deficient bone marrow. Host peptide-H2-M3 was required for optimal NK cell activity against experimental metastases and carcinogenesis. Thus, nonclassical MHC class I molecules can act as cognate ligands for Ly49 molecules. Our results provide insight into the various mechanisms that lead to NK cell tolerance.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Células Asesinas Naturales/inmunología , Activación de Linfocitos , Subfamilia A de Receptores Similares a Lectina de Células NK/metabolismo , Animales , Antígenos de Histocompatibilidad Clase I/genética , Tolerancia Inmunológica , Células Asesinas Naturales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
4.
Immunol Cell Biol ; 100(10): 761-776, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36106449

RESUMEN

The role of B-cell-activating factor (BAFF) in B-lymphocyte biology has been comprehensively studied, but its contributions to innate immunity remain unclear. Natural killer (NK) cells form the first line of defense against viruses and tumors, and have been shown to be defective in patients with systemic lupus erythematosus (SLE). The link between BAFF and NK cells in the development and progression of SLE remains unstudied. By assessing NK cell numbers in wild-type (WT), BAFF-/- (BAFF deficient), BAFF-R-/- (BAFF receptor deficient), TACI-/- (transmembrane activator and calcium modulator and cyclophilin ligand interactor deficient), BCMA-/- (B-cell maturation antigen deficient) and BAFF transgenic (Tg) mice, we observed that BAFF signaling through BAFF-R was essential for sustaining NK cell numbers in the spleen. However, according to the cell surface expression of CD27 and CD11b on NK cells, we found that BAFF was dispensable for NK cell maturation. Ex vivo and in vivo models showed that NK cells from BAFF-/- and BAFF Tg mice produced interferon-γ and killed tumor cells at a level similar to that in WT mice. Finally, we established that NK cells do not express receptors that interact with BAFF in the steady state or in the BAFF Tg mouse model of SLE. Our findings demonstrate that BAFF has an indirect effect on NK cell homeostasis and no effect on NK cell function.


Asunto(s)
Lupus Eritematoso Sistémico , Proteína Activadora Transmembrana y Interactiva del CAML , Ratones , Animales , Proteína Activadora Transmembrana y Interactiva del CAML/genética , Densidad de Población , Interleucina-4 , Ratones Transgénicos , Células Asesinas Naturales/metabolismo
5.
Avian Pathol ; 51(6): 550-560, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35849061

RESUMEN

Mycoplasma gallisepticum is the primary causative agent of chronic respiratory disease in poultry, and vaccination is the measure most commonly used for its control. Pathological changes caused by M. gallisepticum are mainly observed in the trachea and air sacs, but assessment of air sac lesions is subjective. Standardized parameters for evaluation of pathological changes, and their reproducibility and discrimination in uninfected and infected groups, are critical when assessing the efficacy of M. gallisepticum vaccination. This study reviewed and critically appraised the published literature on evaluation of vaccine efficacy against pathological changes caused by M. gallisepticum in poultry in the trachea and air sacs. A search of four electronic databases, with subsequent manual filtering, identified 23 eligible papers published since 1962 describing the assessment of histopathological changes in the trachea using tracheal lesion scores and/or measurement of tracheal mucosal thicknesses and assessment of gross air sac lesions using lesion scores. Measurement of tracheal lesions proved a more reliable and robust method of assessing disease induced by M. gallisepticum when compared to assessment of air sac lesions, highlighting the importance of including assessment of tracheal lesions as the primary outcome variable in vaccine efficacy studies. In addition, this study also identified the necessity for use of a standardized model for evaluation and reporting on M. gallisepticum vaccines to minimize variations between vaccine efficacy studies and to allow direct comparisons between them.RESEARCH HIGHLIGHTS Tracheal and air sac lesions have been used to assess M. gallisepticum vaccine efficacy.The specific parameters and statistical tests used to compare tracheal and air sac lesions vary greatly.Measures of tracheal lesions are more discriminatory than measures of air sac lesions.A standardized model is needed to evaluate vaccines against infection with M. gallisepticum.


Asunto(s)
Infecciones por Mycoplasma , Mycoplasma gallisepticum , Enfermedades de las Aves de Corral , Animales , Aves de Corral , Tráquea/patología , Reproducibilidad de los Resultados , Enfermedades de las Aves de Corral/patología , Infecciones por Mycoplasma/prevención & control , Infecciones por Mycoplasma/veterinaria , Pollos , Vacunas Bacterianas
6.
J Biol Chem ; 294(33): 12534-12546, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31253644

RESUMEN

Nectin and nectin-like (Necl) adhesion molecules are broadly overexpressed in a wide range of cancers. By binding to these adhesion molecules, the immunoreceptors DNAX accessory molecule-1 (DNAM-1), CD96 molecule (CD96), and T-cell immunoreceptor with Ig and ITIM domains (TIGIT) play a crucial role in regulating the anticancer activities of immune effector cells. However, within this axis, it remains unclear how DNAM-1 recognizes its cognate ligands. Here, we determined the structure of human DNAM-1 in complex with nectin-like protein-5 (Necl-5) at 2.8 Å resolution. Unexpectedly, we found that the two extracellular domains (D1-D2) of DNAM-1 adopt an unconventional "collapsed" arrangement that is markedly distinct from those in other immunoglobulin-based immunoreceptors. The DNAM-1/Necl-5 interaction was underpinned by conserved lock-and-key motifs located within their respective D1 domains, but also included a distinct interface derived from DNAM-1 D2. Mutation of the signature DNAM-1 "key" motif within the D1 domain attenuated Necl-5 binding and natural killer cell-mediated cytotoxicity. Altogether, our results have implications for understanding the binding mode of an immune receptor family that is emerging as a viable candidate for cancer immunotherapy.


Asunto(s)
Antígenos de Diferenciación de Linfocitos T , Inmunidad Celular , Células Asesinas Naturales , Receptores Virales , Secuencias de Aminoácidos , Antígenos de Diferenciación de Linfocitos T/química , Antígenos de Diferenciación de Linfocitos T/genética , Antígenos de Diferenciación de Linfocitos T/inmunología , Antígenos de Diferenciación de Linfocitos T/metabolismo , Células HEK293 , Humanos , Células K562 , Células Asesinas Naturales/citología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Mutación , Unión Proteica , Dominios Proteicos , Receptores Virales/química , Receptores Virales/genética , Receptores Virales/inmunología , Receptores Virales/metabolismo
7.
Immunol Cell Biol ; 97(3): 326-339, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30537346

RESUMEN

Class Ib major histocompatibility complex (MHC) is an extended family of molecules, which demonstrate tissue-specific expression and presentation of monomorphic antigens. These characteristics tend to imbue class Ib MHC with unique functions. H2-Q10 is potentially one such molecule that is overexpressed in the liver but its immunological function is not known. We have previously shown that H2-Q10 is a ligand for the natural killer cell receptor Ly49C and now, using H2-Q10-deficient mice, we demonstrate that H2-Q10 can also stabilize the expression of Qa-1b. In the absence of H2-Q10, the development and maturation of conventional hepatic natural killer cells is disrupted. We also provide evidence that H2-Q10 is a new high affinity ligand for CD8αα and controls the development of liver-resident CD8αα γδT cells. These data demonstrate that H2-Q10 has multiple roles in the development of immune subsets and identify an overlap of recognition within the class Ib MHC that is likely to be relevant to the regulation of immunity.


Asunto(s)
Antígenos H-2/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores Inmunológicos/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Animales , Biomarcadores , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Antígenos H-2/genética , Antígenos H-2/metabolismo , Inmunomodulación/genética , Inmunofenotipificación , Células Asesinas Naturales/citología , Ligandos , Hígado/inmunología , Hígado/metabolismo , Ratones , Unión Proteica , Subgrupos de Linfocitos T/citología
8.
J Biol Chem ; 291(36): 18740-52, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27385590

RESUMEN

Murine natural killer (NK) cells are regulated by the interaction of Ly49 receptors with major histocompatibility complex class I molecules (MHC-I). Although the ligands for inhibitory Ly49 were considered to be restricted to classical MHC (MHC-Ia), we have shown that the non-classical MHC molecule (MHC-Ib) H2-M3 was a ligand for the inhibitory Ly49A. Here we establish that another MHC-Ib, H2-Q10, is a bona fide ligand for the inhibitory Ly49C receptor. H2-Q10 bound to Ly49C with a marginally lower affinity (∼5 µm) than that observed between Ly49C and MHC-Ia (H-2K(b)/H-2D(d), both ∼1 µm), and this recognition could be prevented by cis interactions with H-2K in situ To understand the molecular details underpinning Ly49·MHC-Ib recognition, we determined the crystal structures of H2-Q10 and Ly49C bound H2-Q10. Unliganded H2-Q10 adopted a classical MHC-I fold and possessed a peptide-binding groove that exhibited features similar to those found in MHC-Ia, explaining the diverse peptide binding repertoire of H2-Q10. Ly49C bound to H2-Q10 underneath the peptide binding platform to a region that encompassed residues from the α1, α2, and α3 domains, as well as the associated ß2-microglobulin subunit. This docking mode was conserved with that previously observed for Ly49C·H-2K(b) Indeed, structure-guided mutation of Ly49C indicated that Ly49C·H2-Q10 and Ly49C·H-2K(b) possess similar energetic footprints focused around residues located within the Ly49C ß4-stand and L5 loop, which contact the underside of the peptide-binding platform floor. Our data provide a structural basis for Ly49·MHC-Ib recognition and demonstrate that MHC-Ib represent an extended family of ligands for Ly49 molecules.


Asunto(s)
Antígeno de Histocompatibilidad H-2D/química , Células Asesinas Naturales/química , Subfamilia A de Receptores Similares a Lectina de Células NK/química , Animales , Cristalografía por Rayos X , Antígenos H-2/química , Antígenos H-2/genética , Antígenos H-2/inmunología , Antígeno de Histocompatibilidad H-2D/genética , Antígeno de Histocompatibilidad H-2D/inmunología , Células Asesinas Naturales/inmunología , Ratones , Ratones Noqueados , Subfamilia A de Receptores Similares a Lectina de Células NK/genética , Subfamilia A de Receptores Similares a Lectina de Células NK/inmunología , Dominios Proteicos , Estructura Cuaternaria de Proteína
9.
J Immunol ; 194(2): 781-789, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25480565

RESUMEN

The killer cell Ig-like receptor 3DL1 (KIR3DL1) inhibits activation of NK cells upon interaction with HLA class I molecules such as HLA-B*57:01, which contains the Bw4 epitope spanning residues 77-83 (e.g., NLRIALR), and not with HLA allomorphs that possess the Bw6 motif (e.g., HLA-B*08:01), which differ at residues 77, 80, 81, 82, and 83. Although Bw4 residues Ile(80) and Arg(83) directly interact with KIR3DL1*001, their precise role in determining KIR3DL1-HLA-Bw4 specificity remains unclear. Recognition of HLA-B*57:01 by either KIR3DL1(+) NK cells or the NK cell line YTS transfected with KIR3DL1*001 was impaired by mutation of residues 80 and 83 of HLA-B*57:01 to the corresponding amino acids within the Bw6 motif. Conversely, the simultaneous introduction of three Bw4 residues at positions 80, 82, and 83 into HLA-B*08:01 conferred an interaction with KIR3DL1*001. Structural analysis of HLA-B*57:01, HLA-B*08:01, and mutants of each bearing substitutions at positions 80 and 83 revealed that Ile(80) and Arg(83) within the Bw4 motif constrain the conformation of Glu(76), primarily through a salt bridge between Arg(83) and Glu(76). This salt bridge was absent in HLA-Bw6 molecules as well as position 83 mutants of HLA-B*57:01. Mutation of the Bw4 residue Ile(80) also disrupted this salt bridge, providing further insight into the role that position 80 plays in mediating KIR3DL1 recognition. Thus, the strict conformation of HLA-Bw4 allotypes, held in place by the Glu(76)-Arg(83) interaction, facilitates KIR3DL1 binding, whereas Bw6 allotypes present a platform on the α1 helix that is less permissive for KIR3DL1 binding.


Asunto(s)
Epítopos , Antígenos HLA-B , Antígeno HLA-B8 , Receptores KIR3DL1 , Secuencias de Aminoácidos , Línea Celular , Epítopos/genética , Epítopos/inmunología , Antígenos HLA-B/genética , Antígenos HLA-B/inmunología , Antígeno HLA-B8/genética , Antígeno HLA-B8/inmunología , Humanos , Células Asesinas Naturales/citología , Células Asesinas Naturales/inmunología , Mutación , Receptores KIR3DL1/genética , Receptores KIR3DL1/inmunología
10.
Proc Natl Acad Sci U S A ; 110(6): 2252-7, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23345426

RESUMEN

IFN-γ is critical for immunity against infections with intracellular pathogens, such as Salmonella enterica. However, which of the many cell types capable of producing IFN-γ controls Salmonella infections remains unclear. Using a mouse model of systemic Salmonella infection, we observed that only a lack of all lymphocytes or CD90 (Thy1)(+) cells, but not the absence of T cells, Retinoic acid-related orphan receptor (ROR)-γt-dependent lymphocytes, (NK)1.1(+) cells, natural killer T (NKT), and/or B cells alone, replicated the highly susceptible phenotype of IFN-γ-deficient mice to Salmonella infection. A combination of antibody depletions and adoptive transfer experiments revealed that early protective IFN-γ was provided by Thy1-expressing natural killer (NK) cells and that these cells improved antibacterial immunity through the provision of IFN-γ. Further analysis of NK cells producing IFN-γ in response to Salmonella indicated that less mature NK cells were more efficient at mediating antibacterial effector function than terminally differentiated NK cells. Inspired by recent reports of Thy1(+) NK cells contributing to immune memory, we analyzed their role in secondary protection against otherwise lethal WT Salmonella infections. Notably, we observed that a newly generated Salmonella vaccine strain not only conferred superior protection compared with conventional regimens but that this enhanced efficiency of recall immunity was afforded by incorporating CD4(-)CD8(-)Thy1(+) cells into the secondary response. Taken together, these findings demonstrate that Thy1-expressing NK cells play an important role in antibacterial immunity.


Asunto(s)
Interferón gamma/biosíntesis , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/microbiología , Salmonelosis Animal/inmunología , Salmonella typhimurium , Traslado Adoptivo , Animales , Diferenciación Celular/inmunología , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/inmunología , Interferón gamma/deficiencia , Interferón gamma/genética , Células Asesinas Naturales/clasificación , Células Asesinas Naturales/patología , Subgrupos Linfocitarios/inmunología , Subgrupos Linfocitarios/microbiología , Subgrupos Linfocitarios/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Salmonelosis Animal/microbiología , Salmonella typhimurium/genética , Salmonella typhimurium/inmunología , Antígenos Thy-1/metabolismo
11.
Eur J Immunol ; 44(7): 2111-20, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24687687

RESUMEN

The NLRP3 inflammasome plays a crucial role in the innate immune response to pathogens and exogenous or endogenous danger signals. Its activity must be precisely and tightly regulated to generate tailored immune responses. However, the immune cell subsets and cytokines controlling NLRP3 inflammasome activity are still poorly understood. Here, we have shown a link between NKT-cell-mediated TNF-α and NLRP3 inflammasome activity. The NLRP3 inflammasome in APCs was critical to potentiate NKT-cell-mediated immune responses, since C57BL/6 NLRP3 inflammasome-deficient mice exhibited reduced responsiveness to α-galactosylceramide. Importantly, NKT cells were found to act as regulators of NLRP3 inflammasome signaling, as NKT-cell-derived TNF-α was required for optimal IL-1ß and IL-18 production by myeloid cells in response to α-galactosylceramide, by acting on the NLRP3 inflammasome priming step. Thus, NKT cells play a role in the positive regulation of NLRP3 inflammasome priming by mediating the production of TNF-α, thus demonstrating another means by which NKT cells control early inflammation.


Asunto(s)
Proteínas Portadoras/fisiología , Inflamación/etiología , Células T Asesinas Naturales/fisiología , Factor de Necrosis Tumoral alfa/fisiología , Animales , Células Presentadoras de Antígenos/fisiología , Citocinas/biosíntesis , Galactosilceramidas/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR
12.
Eur J Immunol ; 44(4): 1016-30, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24532362

RESUMEN

Heparanase is a ß-d-endoglucuronidase that cleaves heparan sulphate, a key component of the ECM and basement membrane. The remodelling of the ECM by heparanase has been proposed to regulate both normal physiological and pathological processes, including wound healing, inflammation, tumour angiogenesis and cell migration. Heparanase is also known to exhibit non-enzymatic functions by regulating cell adhesion, cell signalling and differentiation. In this study, constitutive heparanase-deficient (Hpse(-/-) ) mice were generated on a C57BL/6 background using the Cre/loxP recombination system, with a complete lack of heparanase mRNA, protein and activity. Although heparanase has been implicated in embryogenesis and development, Hpse(-/-) mice are anatomically normal and fertile. Interestingly, consistent with the suggested function of heparanase in cell migration, the trafficking of dendritic cells from the skin to the draining lymph nodes was markedly reduced in Hpse(-/-) mice. Furthermore, the ability of Hpse(-/-) mice to generate an allergic inflammatory response in the airways, a process that requires dendritic cell migration, was also impaired. These findings establish an important role for heparanase in immunity and identify the enzyme as a potential target for regulation of an immune response.


Asunto(s)
Movimiento Celular/inmunología , Células Dendríticas/inmunología , Glucuronidasa/inmunología , Neumonía/inmunología , Animales , Western Blotting , Movimiento Celular/genética , Células Cultivadas , Células Dendríticas/metabolismo , Femenino , Citometría de Flujo , Expresión Génica/genética , Expresión Génica/inmunología , Glucuronidasa/deficiencia , Glucuronidasa/genética , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Neumonía/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Piel/inmunología , Piel/metabolismo
14.
Immunol Rev ; 235(1): 73-92, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20536556

RESUMEN

Cytotoxic lymphocytes rapidly respond and destroy both malignant cells and cells infected with intracellular pathogens. One mechanism, known as granule exocytosis, employs the secretory granules of these lymphocytes. These include the pore-forming protein perforin (pfp) and a family of serine proteases known as granzymes that cleave and activate effector molecules within the target cell. Over the past two decades, the study of granzymes has largely focused on the ability of these serine proteases to induce cell death. More recently, sophisticated mouse models of disease coupled with gene-targeted mice have allowed investigators to ask why granzyme subfamilies are encoded on different chromosomal loci and what broader role these enzymes might play in inflammation and immune response. Here, we provide a brief overview of the granzyme superfamily, their relationship to pfp, and their reported functions in apoptosis. This overview is followed by a comprehensive analysis of the less characterized and developing field regarding the non-apoptotic functions of granzymes.


Asunto(s)
Apoptosis , Citotoxicidad Inmunológica , Granzimas/metabolismo , Inflamación/enzimología , Linfocitos T Citotóxicos/enzimología , Animales , Apoptosis/genética , Citotoxicidad Inmunológica/genética , Modelos Animales de Enfermedad , Granzimas/genética , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Ratones , Perforina/metabolismo , Vesículas Secretoras/enzimología , Vesículas Secretoras/inmunología , Linfocitos T Citotóxicos/inmunología
15.
mBio ; : e0110124, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39072641

RESUMEN

Various species of campylobacters cause significant disease problems in both humans and animals. The continuing development of tools and methods for genetic and molecular manipulation of campylobacters enables the detailed study of bacterial virulence and disease pathogenesis. Campylobacter hepaticus is an emerging pathogen that causes spotty liver disease (SLD) in poultry. SLD has a significant economic and animal welfare impact as the disease results in elevated mortalities and significant decreases in egg production. Although potential virulence genes of C. hepaticus have been identified, they have not been further studied and characterized, as appropriate genetic tools and methods to transform and perform mutagenesis studies in C. hepaticus have not been available. In this study, the genetic manipulation of C. hepaticus is reported, with the development of novel plasmid vectors, methods for transformation, site-specific mutagenesis, and mutant complementation. These tools were used to delete the pglB gene, an oligosaccharyltransferase, a central enzyme of the N-glycosylation pathway, by allelic exchange. In the mutant strain, N-glycosylation was completely abolished. The tools and methods developed in this study represent innovative approaches that can be applied to further explore important virulence factors of C. hepaticus and other closely related Campylobacter species. IMPORTANCE: Spotty liver disease (SLD) of layer chickens, caused by infection with Campylobacter hepaticus, is a significant economic and animal welfare burden on an important food production industry. Currently, SLD is controlled using antibiotics; however, alternative intervention methods are needed due to increased concerns associated with environmental contamination with antibiotics, and the development of antimicrobial resistance in many bacterial pathogens of humans and animals. This study has developed methods that have enabled the genetic manipulation of C. hepaticus. To validate the methods, the pglB gene was inactivated by allelic exchange to produce a C. hepaticus strain that could no longer N-glycosylate proteins. Subsequently, the mutation was complemented by reintroduction of the gene in trans, on a plasmid vector, to demonstrate that the phenotypic changes noted were caused by the mutation of the targeted gene. The tools developed enable ongoing studies to understand other virulence mechanisms of this important emerging pathogen.

16.
Environ Microbiol Rep ; 16(3): e13265, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38747207

RESUMEN

Role of dust in Salmonella transmission on chicken farms is not well characterised. Salmonella Typhimurium (ST) infection of commercial layer chickens was investigated using a novel sprinkling method of chicken dust spiked with ST and the uptake compared to a conventional oral infection. While both inoculation methods resulted in colonisation of the intestines, the Salmonella load in liver samples was significantly higher at 7 dpi after exposing chicks to sprinkled dust compared to the oral infection group. Infection of chickens using the sprinkling method at a range of doses showed a threshold for colonisation of the gut and organs as low as 1000 CFU/g of dust. Caecal content microbiota analysis post-challenge showed that the profiles of chickens infected by the sprinkling and oral routes were not significantly different; however, both challenges induced differences when compared to the uninfected negative controls. Overall, the study showed that dust sprinkling was an effective way to experimentally colonise chickens with Salmonella and alter the gut microbiota than oral gavage at levels as low as 1000 CFU/g dust. This infection model mimics the field scenario of Salmonella infection in poultry sheds. The model can be used for future challenge studies for effective Salmonella control.


Asunto(s)
Pollos , Polvo , Microbioma Gastrointestinal , Enfermedades de las Aves de Corral , Salmonelosis Animal , Salmonella typhimurium , Animales , Pollos/microbiología , Salmonella typhimurium/crecimiento & desarrollo , Polvo/análisis , Salmonelosis Animal/microbiología , Salmonelosis Animal/prevención & control , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/prevención & control , Ciego/microbiología , Hígado/microbiología
17.
Front Vet Sci ; 11: 1364731, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686027

RESUMEN

Among the Salmonella reduction strategies in poultry production, one option is to use a Salmonella vaccine. The aim of vaccinating layer flocks is to reduce the shedding of wild-type Salmonella in the poultry environment, thereby reducing the contamination of poultry products (eggs and meat). Nutritive diluent and a higher dose of vaccine may enhance its colonization potential in the gut of chickens. In this study, a commercially available live attenuated vaccine (Vaxsafe® ST) was reconstituted in different media and delivered orally to day-old chicks at three different doses (107, 108, and 109 CFU/chick). Gut colonization of the vaccine strain and the effects of vaccination on gut microbiota were assessed in commercial-layer chickens. The vaccine diluent and dosage minimally affected microbiota alpha diversity. Microbiota beta diversity was significantly different (P < 0.05) based on the vaccine diluent and dose, which indicated that the vaccinated and unvaccinated chickens had different gut microbial communities. Differences were noted in the abundance of several genera, including Blautia, Colidextribacter, Dickeya, Enterococcus, Lactobacillus, Pediococcus, and Sellimonas. The abundance of Colidextribacter was significantly lower in chickens that received vaccine reconstituted in Marek's and water diluents, while Lactobacillus abundance was significantly lower in the water group. The highest vaccine dose (109 CFU/chick) did not significantly alter (P > 0.05) the abundance of microbial genera. Chicken age affected the microbiota composition more significantly than the vaccine dose and diluent. The abundance of Lactobacillus, Blautia, Caproiciproducens, Pediococcus, and Colidextribacter was significantly higher on day 14 compared with day 7 post-vaccination. The Salmonella Typhimurium vaccine load in the caeca was not significantly affected by diluent and vaccine dose; however, it was significantly lower (P < 0.0001) on day 14 compared with day 7 post-vaccination. Overall, the S. Typhimurium vaccine minimally affected the gut microbiota structure of layer chicks, whereas changes in microbiota were more significant with chicken age.

18.
J Immunol ; 187(3): 1166-75, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21709155

RESUMEN

Granzymes A and B (GrAB) are known principally for their role in mediating perforin-dependent death of virus-infected or malignant cells targeted by CTL. In this study, we show that granzymes also play a critical role as inducers of Ag cross-presentation by dendritic cells (DC). This was demonstrated by the markedly reduced priming of naive CD8(+) T cells specific for the model Ag OVA both in vitro and in vivo in response to tumor cells killed in the absence of granzymes. Reduced cross-priming was due to impairment of phagocytosis of tumor cell corpses by CD8α(+) DC but not CD8α(-) DC, demonstrating the importance of granzymes in inducing the exposure of prophagocytic "eat-me" signals on the dying target cell. Our data reveal a critical and previously unsuspected role for granzymes A and B in dictating immunogenicity by influencing the mode of tumor cell death and indicate that granzymes contribute to the efficient generation of immune effector pathways in addition to their well-known role in apoptosis induction.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Reactividad Cruzada/inmunología , Granzimas/fisiología , Fagocitosis/inmunología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/patología , Animales , Antígenos de Neoplasias/inmunología , Muerte Celular/inmunología , Línea Celular Tumoral , Pollos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Granzimas/deficiencia , Granzimas/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Ovalbúmina/toxicidad , Fragmentos de Péptidos/toxicidad , Linfocitos T Citotóxicos/enzimología
19.
Proc Natl Acad Sci U S A ; 107(18): 8328-33, 2010 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-20404142

RESUMEN

IL-23 is an important molecular driver of Th17 cells and has strong tumor-promoting proinflammatory activity postulated to occur via adaptive immunity. Conversely, more recently it has been reported that IL-17A elicits a protective inflammation that promotes the activation of tumor-specific CD8(+) T cells. Here we show the much broader impact of IL-23 in antagonizing antitumor immune responses primarily mediated by innate immunity. Furthermore, the majority of this impact was independent of IL-17A, which did not appear critical for many host responses to tumor initiation or metastases. IL-23-deficient mice were resistant to experimental tumor metastases in three models where host NK cells controlled disease. Immunotherapy with IL-2 was more effective in mice lacking IL-23, and again the protection afforded was NK cell mediated and independent of IL-17A. Further investigation revealed that loss of IL-23 promoted perforin and IFN-gamma antitumor effector function in both metastasis models examined. IL-23-deficiency also strikingly protected mice from tumor formation in two distinct mouse models of carcinogenesis where the dependence on host IL-12p40 and IL-17A was quite different. Notably, in the 3'-methylcholanthrene (MCA) induction of fibrosarcoma model, this protection was completely lost in the absence of NK cells. Overall, these data indicate the general role that IL-23 plays in suppressing natural or cytokine-induced innate immunity, promoting tumor development and metastases independently of IL-17A.


Asunto(s)
Inmunidad Innata , Interleucina-17/inmunología , Subunidad p19 de la Interleucina-23/inmunología , Miocardio/inmunología , Neoplasias/inmunología , Neoplasias/patología , Animales , Línea Celular Tumoral , Femenino , Inmunoterapia , Interferón gamma/inmunología , Interleucina-2/inmunología , Subunidad p19 de la Interleucina-23/deficiencia , Células Asesinas Naturales/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Metástasis de la Neoplasia , Perforina/inmunología
20.
Vet Microbiol ; 280: 109721, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36948084

RESUMEN

Poultry vaccines are often administered using water as a suspension media and applied using an oral or coarse spray method. Gel-based vaccine diluents have been developed as an alternative vaccine delivery method. Gels are more viscous, and droplets adhere more effectively to feathers giving the vaccine a longer time to be ingested (through preening). Application of gel diluents with live bacterial vaccines, however, is limited. The present study tested a gel diluent prepared in various media, using a live, attenuated Salmonella Typhimurium vaccine, Vaxsafe ST. Reconstitution in gel diluent did not negatively affect vaccine viability or motility. The invasive capacity of vaccine suspended in gel diluent into cultured intestinal epithelial cells was also tested. Results demonstrated that vaccine suspended in gel diluent retained invasiveness. Day old chicks were orally administered with Vaxsafe ST suspended in gel diluent to characterize in vivo colonization capacity of the vaccine. The results revealed that the VaxSafe ST suspended in gel diluent could efficiently colonize the caeca of chicks, which is needed for the development of effective immunity.


Asunto(s)
Enfermedades de las Aves de Corral , Salmonelosis Animal , Vacunas contra la Salmonella , Animales , Salmonella typhimurium , Vacunas Atenuadas , Enfermedades de las Aves de Corral/microbiología , Pollos , Vacunas Bacterianas , Salmonelosis Animal/prevención & control , Vacunación/veterinaria , Vacunación/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA