Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
EMBO J ; 40(16): e107901, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34169542

RESUMEN

How natural or innate-like lymphocytes generate the capacity to produce IL-4 and other cytokines characteristic of type 2 immunity remains unknown. Invariant natural killer T (iNKT) cells differentiate in the thymus into NKT1, NKT2, and NKT17 subsets, similar to mature, peripheral CD4+ T helper cells. The mechanism for this differentiation was not fully understood. Here, we show that NKT2 cells required higher and prolonged calcium (Ca2+ ) signals and continuing activity of the calcium release-activated calcium (CRAC) channel, than their NKT1 counterparts. The sustained Ca2+ entry via CRAC pathway in NKT2 cells was apparently mediated by ORAI and controlled in part by the large mitochondrial Ca2+ uptake. Unique properties of mitochondria in NKT2 cells, including high activity of oxidative phosphorylation, may regulate mitochondrial Ca2+ buffering in NKT2 cells. In addition, the low Ca2+ extrusion rate may also contribute to the higher Ca2+ level in NKT2 cells. Altogether, we identified ORAI-dependent Ca2+ signaling connected with mitochondria and cellular metabolism, as a central regulatory pathway for the differentiation of NKT2 cells.


Asunto(s)
Calcio/metabolismo , Diferenciación Celular , Células T Asesinas Naturales/metabolismo , Timo/citología , Animales , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Señalización del Calcio , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mitocondrias/metabolismo
2.
J Biol Chem ; 298(8): 102159, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35750212

RESUMEN

Lysosomal storage diseases result in various developmental and physiological complications, including cachexia. To study the causes for the negative energy balance associated with cachexia, we assessed the impact of sulfamidase deficiency and heparan sulfate storage on energy homeostasis and metabolism in a mouse model of type IIIa mucopolysaccharidosis (MPS IIIa, Sanfilippo A syndrome). At 12-weeks of age, MPS IIIa mice exhibited fasting and postprandial hypertriglyceridemia compared with wildtype mice, with a reduction of white and brown adipose tissues. Partitioning of dietary [3H]triolein showed a marked increase in intestinal uptake and secretion, whereas hepatic production and clearance of triglyceride-rich lipoproteins did not differ from wildtype controls. Uptake of dietary triolein was also elevated in brown adipose tissue (BAT), and notable increases in beige adipose tissue occurred, resulting in hyperthermia, hyperphagia, hyperdipsia, and increased energy expenditure. Furthermore, fasted MPS IIIa mice remained hyperthermic when subjected to low temperature but became cachexic and profoundly hypothermic when treated with a lipolytic inhibitor. We demonstrated that the reliance on increased lipid fueling of BAT was driven by a reduced ability to generate energy from stored lipids within the depot. These alterations arose from impaired autophagosome-lysosome fusion, resulting in increased mitochondria content in beige and BAT. Finally, we show that increased mitochondria content in BAT and postprandial dyslipidemia was partially reversed upon 5-week treatment with recombinant sulfamidase. We hypothesize that increased BAT activity and persistent increases in energy demand in MPS IIIa mice contribute to the negative energy balance observed in patients with MPS IIIa.


Asunto(s)
Hipertrigliceridemia , Mucopolisacaridosis III , Tejido Adiposo Pardo/metabolismo , Animales , Caquexia , Ratones , Mitofagia , Mucopolisacaridosis III/metabolismo , Mucopolisacaridosis III/terapia , Trioleína
3.
J Immunol ; 206(6): 1181-1193, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33547171

RESUMEN

CCR6+CXCR3+CCR4-CD4+ memory T cells, termed Th1*, are important for long-term immunity to Mycobacterium tuberculosis and the pathogenesis of autoimmune diseases. Th1* cells express a unique set of lineage-specific transcription factors characteristic of both Th1 and Th17 cells and display distinct gene expression profiles compared with other CD4+ T cell subsets. To examine molecules and signaling pathways important for the effector function of Th1* cells, we performed loss-of-function screening of genes selectively enriched in the Th1* subset. The genetic screen yielded candidates whose depletion significantly impaired TCR-induced IFN-γ production. These included genes previously linked to IFN-γ or M. tuberculosis susceptibility and novel candidates, such as ISOC1, encoding a metabolic enzyme of unknown function in mammalian cells. ISOC1-depleted T cells, which produced less IFN-γ and IL-17, displayed defects in oxidative phosphorylation and glycolysis and impairment of pyrimidine metabolic pathway. Supplementation with extracellular pyrimidines rescued both bioenergetics and IFN-γ production in ISOC1-deficient T cells, indicating that pyrimidine metabolism is a key driver of effector functions in CD4+ T cells and Th1* cells. Results provide new insights into the immune-stimulatory function of ISOC1 as well as the particular metabolic requirements of human memory T cells, providing a novel resource for understanding long-term T cell-driven responses.


Asunto(s)
Hidrolasas/metabolismo , Interferón gamma/genética , Interleucina-17/genética , Células TH1/inmunología , Regulación de la Expresión Génica/inmunología , Técnicas de Silenciamiento del Gen , Células HEK293 , Voluntarios Sanos , Humanos , Hidrolasas/genética , Memoria Inmunológica/genética , Cultivo Primario de Células , Pirimidinas/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología , Células TH1/metabolismo
4.
Anal Biochem ; 552: 60-65, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28987935

RESUMEN

Activities of enzymes localized to the mitochondrial matrix of mammalian cells are often critical regulatory steps in cellular metabolism. As such, measurement of matrix enzyme activities in response to genetic modifications or drug interventions is often desired. However, measurements in intact cells are often hampered by the presence of other isozymes in the cytoplasm as well as the inability to deliver enzyme substrates across cellular membranes. Classic approaches to liberate matrix enzymes utilize harsh treatments that disrupt intracellular architecture or require significant starting material to allow mitochondrial isolation prior to sample extraction. We describe a method using permeabilization reagents for both the plasma and mitochondrial membranes to allow in situ measurement of matrix enzyme activities. It is applied to adherent cell monolayers in 96-well plates treated with perfringolysin O to permeabilize the plasma membrane and alamethicin to permeabilize the mitochondrial inner membrane. We present three examples validated with inhibitor sensitivity: (i) Complex I-mediated oxygen consumption driven by NADH, (ii) ATP hydrolysis by the F1FO complex measuring pH changes in an Agilent Seahorse XF Analyzer, and (iii) Mitochondrial glutaminase (GLS1) activity in a coupled reaction monitoring NADH fluorescence in a plate reader.


Asunto(s)
Toxinas Bacterianas/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Proteínas Hemolisinas/farmacología , Membranas Mitocondriales/efectos de los fármacos , Células A549 , Glutaminasa/metabolismo , Células Hep G2 , Humanos , Membranas Mitocondriales/enzimología , Membranas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , NAD/metabolismo , Consumo de Oxígeno
5.
Proc Natl Acad Sci U S A ; 110(14): 5422-7, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23513224

RESUMEN

Facilitated pyruvate transport across the mitochondrial inner membrane is a critical step in carbohydrate, amino acid, and lipid metabolism. We report that clinically relevant concentrations of thiazolidinediones (TZDs), a widely used class of insulin sensitizers, acutely and specifically inhibit mitochondrial pyruvate carrier (MPC) activity in a variety of cell types. Respiratory inhibition was overcome with methyl pyruvate, localizing the effect to facilitated pyruvate transport, and knockdown of either paralog, MPC1 or MPC2, decreased the EC50 for respiratory inhibition by TZDs. Acute MPC inhibition significantly enhanced glucose uptake in human skeletal muscle myocytes after 2 h. These data (i) report that clinically used TZDs inhibit the MPC, (ii) validate that MPC1 and MPC2 are obligatory components of facilitated pyruvate transport in mammalian cells, (iii) indicate that the acute effect of TZDs may be related to insulin sensitization, and (iv) establish mitochondrial pyruvate uptake as a potential therapeutic target for diseases rooted in metabolic dysfunction.


Asunto(s)
Respiración de la Célula/efectos de los fármacos , Proteínas de Transporte de Membrana/metabolismo , Redes y Vías Metabólicas/fisiología , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/antagonistas & inhibidores , Tiazolidinedionas/farmacología , Acrilatos/farmacología , Análisis de Varianza , Animales , Proteínas de Transporte de Anión , Western Blotting , Línea Celular , Citocromos c/metabolismo , Glucosa/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Proteínas de Transporte de Membrana Mitocondrial , Proteínas Mitocondriales/metabolismo , Transportadores de Ácidos Monocarboxílicos , Músculo Esquelético/metabolismo , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Transportadoras de Solutos , Tiazolidinedionas/metabolismo
6.
PLoS Biol ; 10(9): e1001394, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23049480

RESUMEN

Bax/Bak-mediated mitochondrial outer membrane permeabilization (MOMP) is essential for "intrinsic" apoptotic cell death. Published studies used synthetic liposomes to reveal an intrinsic pore-forming activity of Bax, but it is unclear how other mitochondrial outer membrane (MOM) proteins might facilitate this function. We carefully analyzed the kinetics of Bax-mediated pore formation in isolated MOMs, with some unexpected results. Native MOMs were more sensitive than liposomes to added Bax, and MOMs displayed a lag phase not observed with liposomes. Heat-labile MOM proteins were required for this enhanced response. A two-tiered mathematical model closely fit the kinetic data: first, Bax activation promotes the assembly of a multimeric complex, which then catalyzes the second reaction, Bax-dependent pore formation. Bax insertion occurred immediately upon Bax addition, prior to the end of the lag phase. Permeabilization kinetics were affected in a reciprocal manner by [cBid] and [Bax], confirming the "hit-and-run" hypothesis of cBid-induced direct Bax activation. Surprisingly, MOMP rate constants were linearly related to [Bax], implying that Bax acts non-cooperatively. Thus, the oligomeric catalyst is distinct from Bax. Moreover, contrary to common assumption, pore formation kinetics depend on Bax monomers, not oligomers. Catalyst formation exhibited a sharp transition in activation energy at ∼28°C, suggesting a role for membrane lipid packing. Furthermore, catalyst formation was strongly inhibited by chemical antagonists of the yeast mitochondrial fission protein, Dnm1. However, the mammalian ortholog, Drp1, was undetectable in mitochondrial outer membranes. Moreover, ATP and GTP were dispensable for MOMP. Thus, the data argue that oligomerization of a catalyst protein, distinct from Bax and Drp1, facilitates MOMP, possibly through a membrane-remodeling event.


Asunto(s)
Biocatálisis , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Multimerización de Proteína , Proteína X Asociada a bcl-2/metabolismo , Animales , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Biocatálisis/efectos de los fármacos , Dinamina I/metabolismo , Humanos , Cinética , Liposomas/metabolismo , Masculino , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Modelos Biológicos , Permeabilidad/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Quinazolinonas/farmacología , Ratas , Ratas Sprague-Dawley , Termodinámica
7.
Adv Sci (Weinh) ; 11(12): e2306469, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38235614

RESUMEN

In Alzheimer's disease (AD), dysfunctional mitochondrial metabolism is associated with synaptic loss, the major pathological correlate of cognitive decline. Mechanistic insight for this relationship, however, is still lacking. Here, comparing isogenic wild-type and AD mutant human induced pluripotent stem cell (hiPSC)-derived cerebrocortical neurons (hiN), evidence is found for compromised mitochondrial energy in AD using the Seahorse platform to analyze glycolysis and oxidative phosphorylation (OXPHOS). Isotope-labeled metabolic flux experiments revealed a major block in activity in the tricarboxylic acid (TCA) cycle at the α-ketoglutarate dehydrogenase (αKGDH)/succinyl coenzyme-A synthetase step, metabolizing α-ketoglutarate to succinate. Associated with this block, aberrant protein S-nitrosylation of αKGDH subunits inhibited their enzyme function. This aberrant S-nitrosylation is documented not only in AD-hiN but also in postmortem human AD brains versus controls, as assessed by two separate unbiased mass spectrometry platforms using both SNOTRAP identification of S-nitrosothiols and chemoselective-enrichment of S-nitrosoproteins. Treatment with dimethyl succinate, a cell-permeable derivative of a TCA substrate downstream to the block, resulted in partial rescue of mitochondrial bioenergetic function as well as reversal of synapse loss in AD-hiN. These findings have therapeutic implications that rescue of mitochondrial energy metabolism can ameliorate synaptic loss in hiPSC-based models of AD.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Humanos , Enfermedad de Alzheimer/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Metabolismo Energético/fisiología , Glucólisis , Neuronas/metabolismo
8.
Cell Chem Biol ; 30(8): 965-975.e6, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37478858

RESUMEN

A causal relationship between mitochondrial metabolic dysfunction and neurodegeneration has been implicated in synucleinopathies, including Parkinson disease (PD) and Lewy body dementia (LBD), but underlying mechanisms are not fully understood. Here, using human induced pluripotent stem cell (hiPSC)-derived neurons with mutation in the gene encoding α-synuclein (αSyn), we report the presence of aberrantly S-nitrosylated proteins, including tricarboxylic acid (TCA) cycle enzymes, resulting in activity inhibition assessed by carbon-labeled metabolic flux experiments. This inhibition principally affects α-ketoglutarate dehydrogenase/succinyl coenzyme-A synthetase, metabolizing α-ketoglutarate to succinate. Notably, human LBD brain manifests a similar pattern of aberrantly S-nitrosylated TCA enzymes, indicating the pathophysiological relevance of these results. Inhibition of mitochondrial energy metabolism in neurons is known to compromise dendritic length and synaptic integrity, eventually leading to neuronal cell death. Our evidence indicates that aberrant S-nitrosylation of TCA cycle enzymes contributes to this bioenergetic failure.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Parkinson , Sinucleinopatías , Humanos , Sinucleinopatías/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedad de Parkinson/metabolismo , Neuronas/metabolismo , Encéfalo/metabolismo
9.
Mol Cell Proteomics ; 9(2): 388-402, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19884172

RESUMEN

Compartmentalization of biological processes and the associated cellular components is crucial for cell function. Typically, the location of a component is revealed through a co-localization and/or co-purification with an organelle marker. Therefore, the identification of reliable markers is critical for a thorough understanding of cellular function and dysfunction. We fractionated macrophage-like RAW264.7 cells, both in the resting and endotoxin-activated states, into six fractions representing the major organelles/compartments: nuclei, mitochondria, cytoplasm, endoplasmic reticulum, and plasma membrane as well as an additional dense microsomal fraction. The identity of the first five of these fractions was confirmed via the distribution of conventional enzymatic markers. Through a quantitative liquid chromatography/mass spectrometry-based proteomics analysis of the fractions, we identified 50-member ensembles of marker proteins ("marker ensembles") specific for each of the corresponding organelles/compartments. Our analysis attributed 206 of the 250 marker proteins ( approximately 82%) to organelles that are consistent with the location annotations in the public domain (obtained using DAVID 2008, EntrezGene, Swiss-Prot, and references therein). Moreover, we were able to correct locations for a subset of the remaining proteins, thus proving the superior power of analysis using multiple organelles as compared with an analysis using one specific organelle. The marker ensembles were used to calculate the organelle composition of the six above mentioned subcellular fractions. Knowledge of the precise composition of these fractions can be used to calculate the levels of metabolites in the pure organelles. As a proof of principle, we applied these calculations to known mitochondria-specific lipids (cardiolipins and ubiquinones) and demonstrated their exclusive mitochondrial location. We speculate that the organelle-specific protein ensembles may be used to systematically redefine originally morphologically defined organelles as biochemical entities.


Asunto(s)
Biomarcadores/metabolismo , Fraccionamiento Celular/métodos , Orgánulos/metabolismo , Proteómica/métodos , Animales , Línea Celular , Cromatografía Liquida , Biología Computacional , ADN/metabolismo , Lípidos/análisis , Ratones , Microsomas/metabolismo , Nanotecnología , Antígeno Nuclear de Célula en Proliferación/metabolismo , Fracciones Subcelulares/metabolismo
10.
Mucosal Immunol ; 14(3): 679-690, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33568785

RESUMEN

Inflammatory bowel disease is characterized by an exacerbated intestinal immune response, but the critical mechanisms regulating immune activation remain incompletely understood. We previously reported that the TNF-superfamily molecule TNFSF14 (LIGHT) is required for preventing severe disease in mouse models of colitis. In addition, deletion of lymphotoxin beta receptor (LTßR), which binds LIGHT, also led to aggravated colitis pathogenesis. Here, we aimed to determine the cell type(s) requiring LTßR and the mechanism critical for exacerbation of colitis. Specific deletion of LTßR in neutrophils (LTßRΔN), but not in several other cell types, was sufficient to induce aggravated colitis and colonic neutrophil accumulation. Mechanistically, RNA-Seq analysis revealed LIGHT-induced suppression of cellular metabolism, and mitochondrial function, that was dependent on LTßR. Functional studies confirmed increased mitochondrial mass and activity, associated with excessive mitochondrial ROS production and elevated glycolysis at steady-state and during colitis. Targeting these metabolic changes rescued exacerbated disease severity. Our results demonstrate that LIGHT signals to LTßR on neutrophils to suppress metabolic activation and thereby prevents exacerbated immune pathogenesis during colitis.


Asunto(s)
Colitis/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Receptor beta de Linfotoxina/metabolismo , Mitocondrias/metabolismo , Neutrófilos/metabolismo , Activación Metabólica , Animales , Sulfato de Dextran , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Receptor beta de Linfotoxina/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/inmunología , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética
11.
J Lipid Res ; 51(9): 2785-97, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20574076

RESUMEN

Lipids orchestrate biological processes by acting remotely as signaling molecules or locally as membrane components that modulate protein function. Detailed insight into lipid function requires knowledge of the subcellular localization of individual lipids. We report an analysis of the subcellular lipidome of the mammalian macrophage, a cell type that plays key roles in inflammation, immune responses, and phagocytosis. Nuclei, mitochondria, endoplasmic reticulum (ER), plasmalemma, and cytoplasm were isolated from RAW 264.7 macrophages in basal and activated states. Subsequent lipidomic analyses of major membrane lipid categories identified 229 individual/isobaric species, including 163 glycerophospholipids, 48 sphingolipids, 13 sterols, and 5 prenols. Major subcellular compartments exhibited substantially divergent glycerophospholipid profiles. Activation of macrophages by the Toll-like receptor 4-specific lipopolysaccharide Kdo(2)-lipid A caused significant remodeling of the subcellular lipidome. Some changes in lipid composition occurred in all compartments (e.g., increases in the levels of ceramides and the cholesterol precursors desmosterol and lanosterol). Other changes were manifest in specific organelles. For example, oxidized sterols increased and unsaturated cardiolipins decreased in mitochondria, whereas unsaturated ether-linked phosphatidylethanolamines decreased in the ER. We speculate that these changes may reflect mitochondrial oxidative stress and the release of arachidonic acid from the ER in response to cell activation.


Asunto(s)
Lípidos/análisis , Macrófagos , Orgánulos/química , Receptor Toll-Like 4/metabolismo , Animales , Línea Celular , Membrana Celular/química , Membrana Celular/metabolismo , Biología Computacional/métodos , Bases de Datos Factuales , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Macrófagos/metabolismo , Macrófagos/ultraestructura , Ratones , Estrés Oxidativo
12.
Cell Metab ; 28(3): 490-503.e7, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30043752

RESUMEN

Long-chain fatty acid (LCFA) oxidation has been shown to play an important role in interleukin-4 (IL-4)-mediated macrophage polarization (M(IL-4)). However, many of these conclusions are based on the inhibition of carnitine palmitoyltransferase-1 with high concentrations of etomoxir that far exceed what is required to inhibit enzyme activity (EC90 < 3 µM). We employ genetic and pharmacologic models to demonstrate that LCFA oxidation is largely dispensable for IL-4-driven polarization. Unexpectedly, high concentrations of etomoxir retained the ability to disrupt M(IL-4) polarization in the absence of Cpt1a or Cpt2 expression. Although excess etomoxir inhibits the adenine nucleotide translocase, oxidative phosphorylation is surprisingly dispensable for M(IL-4). Instead, the block in polarization was traced to depletion of intracellular free coenzyme A (CoA), likely resulting from conversion of the pro-drug etomoxir into active etomoxiryl CoA. These studies help explain the effect(s) of excess etomoxir on immune cells and reveal an unappreciated role for CoA metabolism in macrophage polarization.


Asunto(s)
Acilcoenzima A/fisiología , Inhibidores Enzimáticos/farmacología , Compuestos Epoxi/farmacología , Homeostasis/efectos de los fármacos , Macrófagos , Mitocondrias , Células 3T3 , Células A549 , Animales , Carnitina O-Palmitoiltransferasa/metabolismo , Ácidos Grasos/metabolismo , Células HCT116 , Células Hep G2 , Humanos , Interleucina-4/metabolismo , Hígado/metabolismo , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Translocasas Mitocondriales de ADP y ATP/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
13.
J Cell Biol ; 216(4): 1091-1105, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28254829

RESUMEN

Glutamate is the dominant excitatory neurotransmitter in the brain, but under conditions of metabolic stress it can accumulate to excitotoxic levels. Although pharmacologic modulation of excitatory amino acid receptors is well studied, minimal consideration has been given to targeting mitochondrial glutamate metabolism to control neurotransmitter levels. Here we demonstrate that chemical inhibition of the mitochondrial pyruvate carrier (MPC) protects primary cortical neurons from excitotoxic death. Reductions in mitochondrial pyruvate uptake do not compromise cellular energy metabolism, suggesting neuronal metabolic flexibility. Rather, MPC inhibition rewires mitochondrial substrate metabolism to preferentially increase reliance on glutamate to fuel energetics and anaplerosis. Mobilizing the neuronal glutamate pool for oxidation decreases the quantity of glutamate released upon depolarization and, in turn, limits the positive-feedback cascade of excitotoxic neuronal injury. The finding links mitochondrial pyruvate metabolism to glutamatergic neurotransmission and establishes the MPC as a therapeutic target to treat neurodegenerative diseases characterized by excitotoxicity.


Asunto(s)
Muerte Celular/fisiología , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Ácido Pirúvico/metabolismo , Animales , Metabolismo Energético/fisiología , Ácido Glutámico/metabolismo , Proteínas Mitocondriales , Transportadores de Ácidos Monocarboxílicos , Enfermedades Neurodegenerativas/metabolismo , Oxidación-Reducción , Ratas , Ratas Sprague-Dawley , Proteínas Transportadoras de Solutos
14.
Free Radic Biol Med ; 82: 63-72, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25578654

RESUMEN

Polyunsaturated fatty acid (PUFA) peroxidation is initiated by hydrogen atom abstraction at bis-allylic sites and sets in motion a chain reaction that generates multiple toxic products associated with numerous disorders. Replacement of bis-allylic hydrogens of PUFAs with deuterium atoms (D-PUFAs), termed site-specific isotope reinforcement, inhibits PUFA peroxidation and confers cell protection against oxidative stress. We demonstrate that structurally diverse deuterated PUFAs similarly protect against oxidative stress-induced injury in both yeast and mammalian (myoblast H9C2) cells. Cell protection occurs specifically at the lipid peroxidation step, as the formation of isoprostanes, immediate products of lipid peroxidation, is drastically suppressed by D-PUFAs. Mitochondrial bioenergetics function is a likely downstream target of oxidative stress and a subject of protection by D-PUFAs. Pretreatment of cells with D-PUFAs is shown to prevent inhibition of maximal uncoupler-stimulated respiration as well as increased mitochondrial uncoupling, in response to oxidative stress induced by agents with diverse mechanisms of action, including t-butylhydroperoxide, ethacrynic acid, or ferrous iron. Analysis of structure-activity relationships of PUFAs harboring deuterium at distinct sites suggests that there may be a mechanism supplementary to the kinetic isotope effect of deuterium abstraction off the bis-allylic sites that accounts for the protection rendered by deuteration of PUFAs. Paradoxically, PUFAs with partially deuterated bis-allylic positions that retain vulnerable hydrogen atoms (e.g., monodeuterated 11-D1-Lin) protect in a manner similar to that of PUFAs with completely deuterated bis-allylic positions (e.g., 11,11-D2-Lin). Moreover, inclusion of just a fraction of deuterated PUFAs (20-50%) in the total pool of PUFAs preserves mitochondrial respiratory function and confers cell protection. The results indicate that the therapeutic potential of D-PUFAs may derive from the preservation of mitochondrial function.


Asunto(s)
Antioxidantes/farmacología , Ácidos Grasos Insaturados/farmacología , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Animales , Línea Celular , Respiración de la Célula , Deuterio , Metabolismo Energético , Ácido Etacrínico/farmacología , Peroxidación de Lípido/fisiología , Ratas , Relación Estructura-Actividad , terc-Butilhidroperóxido/farmacología
15.
EMBO Mol Med ; 5(6): 904-18, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23703906

RESUMEN

Miner1 is a redox-active 2Fe2S cluster protein. Mutations in Miner1 result in Wolfram Syndrome, a metabolic disease associated with diabetes, blindness, deafness, and a shortened lifespan. Embryonic fibroblasts from Miner1(-/-) mice displayed ER stress and showed hallmarks of the unfolded protein response. In addition, loss of Miner1 caused a depletion of ER Ca(2+) stores, a dramatic increase in mitochondrial Ca(2+) load, increased reactive oxygen and nitrogen species, an increase in the GSSG/GSH and NAD(+)/NADH ratios, and an increase in the ADP/ATP ratio consistent with enhanced ATP utilization. Furthermore, mitochondria in fibroblasts lacking Miner1 displayed ultrastructural alterations, such as increased cristae density and punctate morphology, and an increase in O2 consumption. Treatment with the sulphydryl anti-oxidant N-acetylcysteine reversed the abnormalities in the Miner1 deficient cells, suggesting that sulphydryl reducing agents should be explored as a treatment for this rare genetic disease.


Asunto(s)
Calcio/metabolismo , Proteínas Portadoras/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Compuestos de Sulfhidrilo/química , Respuesta de Proteína Desplegada , Adenosina Trifosfato/metabolismo , Animales , Antioxidantes/farmacología , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Línea Celular , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Ratones , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , NAD/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Oxidación-Reducción , Compuestos de Sulfhidrilo/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos , Síndrome de Wolfram/metabolismo , Síndrome de Wolfram/patología
16.
J Biol Chem ; 280(32): 28894-902, 2005 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-15932874

RESUMEN

Neuronal death in response to excitotoxic levels of glutamate is dependent upon mitochondrial Ca2+ accumulation and is associated with a drop in ATP levels and a loss in ionic homeostasis. Yet the mapping of temporal events in mitochondria subsequent to Ca2+ sequestration is incomplete. By isolating mitochondria from primary cultures, we discovered that glutamate treatment of cortical neurons for 10 min caused 44% inhibition of ADP-stimulated respiration, whereas the maximal rate of electron transport (uncoupler-stimulated respiration) was inhibited by approximately 10%. The Ca2+ load in mitochondria from glutamate-treated neurons was estimated to be 167 +/- 19 nmol/mg protein. The glutamate-induced Ca2+ load was less than the maximal Ca2+ uptake capacity of the mitochondria determined in vitro (363 +/- 35 nmol/mg protein). Comparatively, mitochondria isolated from cerebellar granule cells demonstrated a higher Ca2+ uptake capacity (686 +/- 71 nmol/mg protein) than the cortical mitochondria, and the glutamate-induced load of Ca2+ was a smaller percentage of the maximal Ca2+ uptake capacity. Thus, this study indicated that Ca(2+)-induced impairment of mitochondrial ATP production is an early event in the excitotoxic cascade that may contribute to decreased cellular ATP and loss of ionic homeostasis that precede commitment to neuronal death.


Asunto(s)
Mitocondrias/metabolismo , Mitocondrias/patología , Neuronas/metabolismo , Adenosina Difosfato/química , Adenosina Trifosfato/química , Animales , Calcimicina/farmacología , Calcio/metabolismo , Muerte Celular , Supervivencia Celular , Células Cultivadas , Cerebelo/citología , Citoplasma/metabolismo , Electrones , Ácido Glutámico/química , Ácido Glutámico/farmacología , Ionóforos/farmacología , Iones , Potenciales de la Membrana , Neuronas/patología , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
17.
J Biol Chem ; 280(49): 40398-401, 2005 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-16207717

RESUMEN

Cyclic AMP response element-binding protein (CREB) is a widely expressed transcription factor whose role in neuronal protection is now well established. Here we report that CREB is present in the mitochondrial matrix of neurons and that it binds directly to cyclic AMP response elements (CREs) found within the mitochondrial genome. Disruption of CREB activity in the mitochondria decreases the expression of a subset of mitochondrial genes, including the ND5 subunit of complex I, down-regulates complex I-dependent mitochondrial respiration, and increases susceptibility to 3-nitropropionic acid, a mitochondrial toxin that induces a clinical and pathological phenotype similar to Huntington disease. These results demonstrate that regulation of mitochondrial gene expression by mitochondrial CREB, in part, underlies the protective effects of CREB and raise the possibility that decreased mitochondrial CREB activity contributes to the mitochondrial dysfunction and neuronal loss associated with neurodegenerative disorders.


Asunto(s)
Encéfalo/ultraestructura , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Mitocondrias/química , Neuronas/fisiología , Animales , Secuencia de Bases , Supervivencia Celular , Corteza Cerebral/citología , AMP Cíclico , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/química , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , ADN Mitocondrial/genética , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/fisiología , Ensayo de Cambio de Movilidad Electroforética , Humanos , Ratones , Ratones Transgénicos , Microscopía Confocal , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Datos de Secuencia Molecular , Enfermedades Neurodegenerativas , Neuronas/ultraestructura , Nitrocompuestos/farmacología , Consumo de Oxígeno/fisiología , Fosforilación , Propionatos/farmacología , Ratas , Elementos de Respuesta , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA