Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proteins ; 85(11): 1994-2008, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28718923

RESUMEN

In this report we investigated, within a group of closely related single domain camelid antibodies (VH Hs), the relationship between binding affinity and neutralizing activity as it pertains to ricin, a fast-acting toxin and biothreat agent. The V1C7-like VH Hs (V1C7, V2B9, V2E8, and V5C1) are similar in amino acid sequence, but differ in their binding affinities and toxin-neutralizing activities. Using the X-ray crystal structure of V1C7 in complex with ricin's enzymatic subunit (RTA) as a template, Rosetta-based homology modeling coupled with energetic decomposition led us to predict that a single pairwise interaction between Arg29 on V5C1 and Glu67 on RTA was responsible for the difference in ricin toxin binding affinity between V1C7, a weak neutralizer, and V5C1, a moderate neutralizer. This prediction was borne out experimentally: substitution of Arg for Gly at position 29 enhanced V1C7's binding affinity for ricin, whereas the reverse (ie, Gly for Arg at position 29) diminished V5C1's binding affinity by >10 fold. As expected, the V5C1R29G mutant was largely devoid of toxin-neutralizing activity (TNA). However, the TNA of the V1C7G29R mutant was not correspondingly improved, indicating that in the V1C7 family binding affinity alone does not account for differences in antibody function. V1C7 and V5C1, as well as their respective point mutants, recognized indistinguishable epitopes on RTA, at least at the level of sensitivity afforded by hydrogen-deuterium mass spectrometry. The results of this study have implications for engineering therapeutic antibodies because they demonstrate that even subtle differences in epitope specificity can account for important differences in antibody function.


Asunto(s)
Anticuerpos Neutralizantes , Mapeo Epitopo/métodos , Modelos Moleculares , Ingeniería de Proteínas/métodos , Ricina , Anticuerpos de Dominio Único , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/metabolismo , Camelidae , Unión Proteica , Ricina/química , Ricina/aislamiento & purificación , Ricina/metabolismo , Alineación de Secuencia , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/metabolismo
2.
Immunohorizons ; 2(8): 262-273, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30766971

RESUMEN

Ricin is a fast-acting protein toxin classified by the Centers for Disease Control and Prevention as a biothreat agent. In this report, we describe five new mouse mAbs directed against an immunodominant region, so-called epitope cluster II, on the surface of ricin's ribosome-inactivating enzymatic subunit A (RTA). The five mAbs were tested alongside four previously described cluster II-specific mAbs for their capacity to passively protect mice against 10× LD50 ricin challenge by injection. Only three of the mAbs (LE4, PH12, and TB12) afforded protection over the 7-d study period. Neither binding affinity nor in vitro toxin-neutralizing activity could fully account for LE4, PH12, and TB12's potent in vivo activity relative to the other six mAbs. However, epitope mapping studies by hydrogen exchange-mass spectrometry revealed that LE4, PH12, and TB12 shared common contact points on RTA corresponding to RTA α-helices D and E and ß-strands d and e located on the back side of RTA relative to the active site. The other six mAbs recognized overlapping epitopes on RTA, but none shared the same hydrogen exchange-mass spectrometry profile as LE4, PH12, and TB12. A high-density competition ELISA with a panel of ricin-specific, single-domain camelid Abs indicated that even though LE4, PH12, and TB12 make contact with similar secondary motifs, they likely approach RTA from different angles. These results underscore how subtle differences in epitope specificity can significantly impact Ab functionality in vivo. ImmunoHorizons, 2018, 2: 262-273.

3.
Antibodies (Basel) ; 7(4)2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30775035

RESUMEN

In this report, we used hydrogen exchange-mass spectrometry (HX-MS) to identify the epitopes recognized by 21 single-domain camelid antibodies (VHHs) directed against the ribosome-inactivating subunit (RTA) of ricin toxin, a biothreat agent of concern to military and public health authorities. The VHHs, which derive from 11 different B-cell lineages, were binned together based on competition ELISAs with IB2, a monoclonal antibody that defines a toxin-neutralizing hotspot ("cluster 3") located in close proximity to RTA's active site. HX-MS analysis revealed that the 21 VHHs recognized four distinct epitope subclusters (3.1-3.4). Sixteen of the 21 VHHs grouped within subcluster 3.1 and engage RTA α-helices C and G. Three VHHs grouped within subcluster 3.2, encompassing a-helices C and G, plus α-helix B. The single VHH in subcluster 3.3 engaged RTA α-helices B and G, while the epitope of the sole VHH defining subcluster 3.4 encompassed α-helices C and E, and ß-strand h. Modeling these epitopes on the surface of RTA predicts that the 20 VHHs within subclusters 3.1-3.3 physically occlude RTA's active site cleft, while the single antibody in subcluster 3.4 associates on the active site's upper rim.

4.
Protein Eng Des Sel ; 31(7-8): 277-287, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30265352

RESUMEN

Ricin toxin's enzymatic subunit (RTA) has been subjected to intensive B cell epitope mapping studies using a combination of competition ELISAs, hydrogen exchange-mass spectrometry and X-ray crystallography. Those studies identified four spatially distinct clusters (I-IV) of toxin-neutralizing epitopes on the surface of RTA. Here we describe A9, a new single domain camelid antibody (VHH) that was proposed to recognize a novel epitope on RTA that straddles clusters I and III. The X-ray crystal structure of A9 bound to RTA (2.6 Å resolution) revealed extensive antibody contact with RTA's ß-strand h (732 Å2 buried surface area; BSA), along with limited engagement with α-helix D (90 Å2) and α-helix C (138 Å2). Collectively, these contacts explain the overlap between epitope clusters I and III, as identified by competition ELISA. However, considerable binding affinity, and, consequently, toxin-neutralizing activity of A9 is mediated by an unusual CDR2 containing five consecutive Gly residues that interact with α-helix B (82 Å2), a known neutralizing hotspot on RTA. Removal of a single Gly residue from the penta-glycine stretch in CDR2 reduced A9's binding affinity by 10-fold and eliminated toxin-neutralizing activity. Computational modeling indicates that removal of a Gly from CDR2 does not perturb contact with RTA per se, but results in the loss of an intramolecular hydrogen bond network involved in stabilizing CDR2 in the unbound state. These results reveal a novel configuration of a CDR2 element involved in neutralizing ricin toxin.


Asunto(s)
Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Afinidad de Anticuerpos , Ricina/inmunología , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/inmunología , Secuencia de Aminoácidos , Animales , Chlorocebus aethiops , Modelos Moleculares , Estructura Secundaria de Proteína , Células Vero
5.
Clin Vaccine Immunol ; 24(12)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29021300

RESUMEN

We previously produced a heavy-chain-only antibody (Ab) VH domain (VHH)-displayed phage library from two alpacas that had been immunized with ricin toxoid and nontoxic mixtures of the enzymatic ricin toxin A subunit (RTA) and binding ricin toxin B subunit (RTB) (D. J. Vance, J. M. Tremblay, N. J. Mantis, and C. B. Shoemaker, J Biol Chem 288:36538-36547, 2013, https://doi.org/10.1074/jbc.M113.519207). Initial and subsequent screens of that library by direct enzyme-linked immunosorbent assay (ELISA) yielded more than two dozen unique RTA- and RTB-specific VHHs, including 10 whose structures were subsequently solved in complex with RTA. To generate a more complete antigenic map of ricin toxin and to define the epitopes associated with toxin-neutralizing activity, we subjected the VHH-displayed phage library to additional "pannings" on both receptor-bound ricin and antibody-captured ricin. We now report the full-length DNA sequences, binding affinities, and neutralizing activities of 68 unique VHHs: 31 against RTA, 33 against RTB, and 4 against ricin holotoxin. Epitope positioning was achieved through cross-competition ELISAs performed with a panel of monoclonal antibodies (MAbs) and verified, in some instances, with hydrogen-deuterium exchange mass spectrometry. The 68 VHHs grouped into more than 20 different competition bins. The RTA-specific VHHs with strong toxin-neutralizing activities were confined to bins that overlapped two previously identified neutralizing hot spots, termed clusters I and II. The four RTB-specific VHHs with potent toxin-neutralizing activity grouped within three adjacent bins situated at the RTA-RTB interface near cluster II. These results provide important insights into epitope interrelationships on the surface of ricin and delineate regions of vulnerability that can be exploited for the purpose of vaccine and therapeutic development.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Mapeo Epitopo , Epítopos/inmunología , Ricina/inmunología , Anticuerpos de Dominio Único/inmunología , Animales , Camélidos del Nuevo Mundo , Sustancias para la Guerra Química , Unión Proteica
6.
Clin Vaccine Immunol ; 24(12)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29046307

RESUMEN

RiVax is a promising recombinant ricin toxin A subunit (RTA) vaccine antigen that has been shown to be safe and immunogenic in humans and effective at protecting rhesus macaques against lethal-dose aerosolized toxin exposure. We previously used a panel of RTA-specific monoclonal antibodies (MAbs) to demonstrate, by competition enzyme-linked immunosorbent assay (ELISA), that RiVax elicits similar serum antibody profiles in humans and macaques. However, the MAb binding sites on RiVax have yet to be defined. In this study, we employed hydrogen exchange-mass spectrometry (HX-MS) to localize the epitopes on RiVax recognized by nine toxin-neutralizing MAbs and one nonneutralizing MAb. Based on strong protection from hydrogen exchange, the nine MAbs grouped into four spatially distinct epitope clusters (namely, clusters I to IV). Cluster I MAbs protected RiVax's α-helix B (residues 94 to 107), a protruding immunodominant secondary structure element known to be a target of potent toxin-neutralizing antibodies. Cluster II consisted of two subclusters located on the "back side" (relative to the active site pocket) of RiVax. One subcluster involved α-helix A (residues 14 to 24) and α-helices F-G (residues 184 to 207); the other encompassed ß-strand d (residues 62 to 69) and parts of α-helices D-E (154 to 164) and the intervening loop. Cluster III involved α-helices C and G on the front side of RiVax, while cluster IV formed a sash from the front to back of RiVax, spanning strands b, c, and d (residues 35 to 59). Having a high-resolution B cell epitope map of RiVax will enable the development and optimization of competitive serum profiling assays to examine vaccine-induced antibody responses across species.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Mapeo Epitopo , Epítopos/inmunología , Vacunas/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Sitios de Unión , Humanos , Macaca mulatta , Unión Proteica , Vacunas de Subunidad/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA