Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Chem Rev ; 122(18): 14815-14841, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36006409

RESUMEN

Biosynthetic mechanisms of natural products primarily depend on systems of protein catalysts. However, within the field of biosynthesis, there are cases in which the inherent chemical reactivity of metabolic intermediates and substrates evades the involvement of enzymes. These reactions are difficult to characterize based on their reactivity and occlusion within the milieu of the cellular environment. As we continue to build a strong foundation for how microbes and higher organisms produce natural products, therein lies a need for understanding how protein independent or nonenzymatic biosynthetic steps can occur. We have classified such reactions into four categories: intramolecular, multicomponent, tailoring, and light-induced reactions. Intramolecular reactions is one of the most well studied in the context of biomimetic synthesis, consisting of cyclizations and cycloadditions due to the innate reactivity of the intermediates. There are two subclasses that make up multicomponent reactions, one being homologous multicomponent reactions which results in dimeric and pseudodimeric natural products, and the other being heterologous multicomponent reactions, where two or more precursors from independent biosynthetic pathways undergo a variety of reactions to produce the mature natural product. The third type of reaction discussed are tailoring reactions, where postmodifications occur on the natural products after the biosynthetic machinery is completed. The last category consists of light-induced reactions involving ecologically relevant UV light rather than high intensity UV irradiation that is traditionally used in synthetic chemistry. This review will cover recent nonenzymatic biosynthetic mechanisms and include sources for those reviewed previously.


Asunto(s)
Productos Biológicos , Productos Biológicos/química , Vías Biosintéticas , Catálisis , Ciclización , Reacción de Cicloadición
2.
Angew Chem Int Ed Engl ; 61(38): e202208029, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-35881566

RESUMEN

We report the first total synthesis of an antimycobacterial natural product oxazinin A that takes advantage of a multi-component cascade reaction of anthranilic acid and a precursor polyketide containing an aldehyde. The route utilized for the synthesis of the pseudodimeric oxazinin A validates a previously proposed biosynthetic mechanism, invoking a non-enzymatic pathway to the complex molecule. We found a 76 : 10 : 9 : 5 ratio of oxazinin diastereomers from the synthetic cascade, which is an identical match to that found in the fermentation media from the fungus Eurotiomycetes 110162. Further investigation of the non-enzymatic formation of oxazinin A using 1 H-15 N HMBC NMR spectroscopy allowed for a plausible determination of the stepwise mechanism. The developed route is highly amenable for the synthesis of diverse sets of analogs around the oxazinin scaffold to study structure-activity relationships (SAR).


Asunto(s)
Productos Biológicos , Biomimética , Productos Biológicos/química , Hongos/química , Compuestos Heterocíclicos de 4 o más Anillos
3.
Org Lett ; 22(4): 1516-1519, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-32017580

RESUMEN

Pyonitrins A-D are recently isolated natural products from the insect-associated Pseudomonas protegens strain, which were isolated from complex fractions that exhibited antifungal activity via an in vivo murine candidiasis assay. Genomic studies of Pseudomonas protegens suggested that pyonitrins A-D are formed via a spontaneous nonenzymatic reaction between biosynthetic intermediates of two well-known natural products pyochelin and pyrrolnitrin. Herein we have accomplished the first biomimetic total synthesis of pyonitrins A-D in three steps and studied the nonenzymatic formation of the pyonitrins using 15N NMR spectroscopy.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Pseudomonas/química , Tiazoles/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Estereoisomerismo , Tiazoles/síntesis química , Tiazoles/química
4.
ACS Cent Sci ; 5(11): 1824-1833, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31807684

RESUMEN

Despite rapid evolution in the area of microbial natural products chemistry, there is currently no open access database containing all microbially produced natural product structures. Lack of availability of these data is preventing the implementation of new technologies in natural products science. Specifically, development of new computational strategies for compound characterization and identification are being hampered by the lack of a comprehensive database of known compounds against which to compare experimental data. The creation of an open access, community-maintained database of microbial natural product structures would enable the development of new technologies in natural products discovery and improve the interoperability of existing natural products data resources. However, these data are spread unevenly throughout the historical scientific literature, including both journal articles and international patents. These documents have no standard format, are often not digitized as machine readable text, and are not publicly available. Further, none of these documents have associated structure files (e.g., MOL, InChI, or SMILES), instead containing images of structures. This makes extraction and formatting of relevant natural products data a formidable challenge. Using a combination of manual curation and automated data mining approaches we have created a database of microbial natural products (The Natural Products Atlas, www.npatlas.org) that includes 24 594 compounds and contains referenced data for structure, compound names, source organisms, isolation references, total syntheses, and instances of structural reassignment. This database is accompanied by an interactive web portal that permits searching by structure, substructure, and physical properties. The Web site also provides mechanisms for visualizing natural products chemical space and dashboards for displaying author and discovery timeline data. These interactive tools offer a powerful knowledge base for natural products discovery with a central interface for structure and property-based searching and presents new viewpoints on structural diversity in natural products. The Natural Products Atlas has been developed under FAIR principles (Findable, Accessible, Interoperable, and Reusable) and is integrated with other emerging natural product databases, including the Minimum Information About a Biosynthetic Gene Cluster (MIBiG) repository, and the Global Natural Products Social Molecular Networking (GNPS) platform. It is designed as a community-supported resource to provide a central repository for known natural product structures from microorganisms and is the first comprehensive, open access resource of this type. It is expected that the Natural Products Atlas will enable the development of new natural products discovery modalities and accelerate the process of structural characterization for complex natural products libraries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA