Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 289(8): 5013-24, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24385426

RESUMEN

The mammalian circadian clock is a molecular oscillator composed of a feedback loop that involves transcriptional activators CLOCK and BMAL1, and repressors Cryptochrome (CRY) and Period (PER). Here we show that a direct CLOCK·BMAL1 target gene, Gm129, is a novel regulator of the feedback loop. ChIP analysis revealed that the CLOCK·BMAL1·CRY1 complex strongly occupies the promoter region of Gm129. Both mRNA and protein levels of GM129 exhibit high amplitude circadian oscillations in mouse liver, and Gm129 gene encodes a nuclear-localized protein that directly interacts with BMAL1 and represses CLOCK·BMAL1 activity. In vitro and in vivo protein-DNA interaction results demonstrate that, like CRY1, GM129 functions as a repressor by binding to the CLOCK·BMAL1 complex on DNA. Although Gm129(-/-) or Cry1(-/-) Gm129(-/-) mice retain a robust circadian rhythm, the peaks of Nr1d1 and Dbp mRNAs in liver exhibit a significant phase delay compared with control. Our results suggest that, in addition to CRYs and PERs, the GM129 protein contributes to the transcriptional feedback loop by modulating CLOCK·BMAL1 activity as a transcriptional repressor.


Asunto(s)
Relojes Circadianos/genética , Regulación de la Expresión Génica , Proteínas Represoras/metabolismo , Transcripción Genética , Animales , Proteínas CLOCK/metabolismo , Núcleo Celular/metabolismo , Inmunoprecipitación de Cromatina , Criptocromos/metabolismo , ADN/metabolismo , Hígado/metabolismo , Ratones , Ratones Noqueados , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Células 3T3 NIH , Proteínas Nucleares/metabolismo , Unión Proteica , Transporte de Proteínas , Proteínas Represoras/deficiencia , Proteínas Represoras/genética
2.
Circ Res ; 111(5): e111-22, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22740088

RESUMEN

RATIONALE: Mating type switching/sucrose non-fermenting (SWI/SNF) chromatin-remodeling complexes utilize either BRG1 or BRM as a catalytic subunit to alter nucleosome position and regulate gene expression. BRG1 is required for vascular endothelial cell (VEC) development and embryonic survival, whereas BRM is dispensable. OBJECTIVE: To circumvent embryonic lethality and study Brg1 function in adult tissues, we used conditional gene targeting. To evaluate possible Brg1-Brm redundancy, we analyzed Brg1 mutant mice on wild-type and Brm-deficient backgrounds. METHODS AND RESULTS: The inducible Mx1-Cre driver was used to mutate Brg1 in adult mice. These conditional-null mutants exhibited a tissue-specific phenotype and unanticipated functional compensation between Brg1 and Brm. Brg1 single mutants were healthy and had a normal lifespan, whereas Brg1/Brm double mutants exhibited cardiovascular defects and died within 1 month. BRG1 and BRM were required for the viability of VECs but not other cell types where both genes were also knocked out. The VEC phenotype was most evident in the heart, particularly in the microvasculature of the outer myocardium, and was recapitulated in primary cells ex vivo. VEC death resulted in vascular leakage, cardiac hemorrhage, secondary death of cardiomyocytes due to ischemia, and ventricular dissections. CONCLUSIONS: BRG1-catalyzed SWI/SNF complexes are particularly important in cardiovascular tissues. However, in contrast to embryonic development, in which Brm does not compensate, Brg1 is required in adult VECs only when Brm is also mutated. These results demonstrate for the first time that Brm functionally compensates for Brg1 in vivo and that there are significant changes in the relative importance of BRG1- and BRM-catalyzed SWI/SNF complexes during the development of an essential cell lineage.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , ADN Helicasas/metabolismo , Células Endoteliales/metabolismo , Cardiopatías Congénitas/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Factores de Edad , Animales , Catálisis , Muerte Celular/fisiología , Linaje de la Célula/fisiología , Supervivencia Celular/fisiología , Proteínas Cromosómicas no Histona/genética , Vasos Coronarios/embriología , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , ADN Helicasas/genética , Ecocardiografía , Células Endoteliales/patología , Corazón/embriología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Homeostasis/fisiología , Ratones , Ratones Transgénicos , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Proteínas Nucleares/genética , Derrame Pleural/genética , Derrame Pleural/metabolismo , Derrame Pleural/patología , Factores de Transcripción/genética
3.
Proc Natl Acad Sci U S A ; 108(2): 516-21, 2011 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-21187431

RESUMEN

Cryptochrome (CRY) is a blue-light sensitive flavoprotein that functions as the primary circadian photoreceptor in Drosophila melanogaster. The mechanism by which it transmits the light signal to the core clock circuitry is not known. We conducted in vitro studies on the light-induced conformational change in CRY and its effect on protein-protein interaction and performed in vivo analysis of the lifetime of the signaling state of the protein to gain some insight into the mechanism of phototransduction. We find that exposure of CRY to blue light induces a conformation similar to that of the constitutively active CRY mutant with a C-terminal deletion (CRYΔ). This light-induced conformation has a half-life of ∼15 min in the dark at 25 °C and is characterized by increased affinity to Jetlag E3 ligase. In vivo analysis reveals that in the Drosophila S2 cell line, the signaling state induced by a millisecond light exposure has a half-life of 27 min in the dark at 0 °C during which period it is susceptible to degradation by the ubiquitin-proteasome system. These findings lead to a plausible model for circadian photoreception/phototransduction in Drosophila.


Asunto(s)
Criptocromos/química , Drosophila melanogaster/metabolismo , Animales , Ritmo Circadiano , Flavoproteínas/química , Cinética , Luz , Modelos Químicos , Mutación , Células Fotorreceptoras de Invertebrados/metabolismo , Conformación Proteica , Mapeo de Interacción de Proteínas , Temperatura , Factores de Tiempo
4.
J Biol Chem ; 286(29): 25891-902, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21613214

RESUMEN

The current consensus model for the circadian clock in mammals is based on a transcription-translation feedback loop. In this model, CRY and PER proteins repress their own transcription by suppressing the transactivator function of the CLOCK:BMAL1 heterodimer directly (physical model) and by facilitating post-translational modifications (chemical model). Most of the data for this model come from genetic and cell biological experiments. Here, we have purified all of the core clock proteins and performed in vitro and in vivo biochemical experiments to test the physical model. We find that CLOCK:BMAL1 binds to an E-box sequence in DNA and that CRY binds stably to the CLOCK:BMAL1:E-box ternary complex independently of PER. Both CRY and PER bind to CLOCK and BMAL1 off DNA but, in contrast to CRY, PER does not bind to the CLOCK:BMAL1:E-box complex. Unexpectedly, PER actually interferes with the binding of CRY to the CLOCK:BMAL1:E-box ternary complex. CRY likely destabilizes the CLOCK:BMAL1 heterodimer on DNA by a post-translational mechanism after binding to the complex. These findings support some aspects of the canonical model, but also suggest that some key features of the model need to be revised.


Asunto(s)
Relojes Circadianos , Modelos Biológicos , Factores de Transcripción ARNTL/metabolismo , Animales , Secuencia de Bases , Proteínas CLOCK/aislamiento & purificación , Proteínas CLOCK/metabolismo , Línea Celular , Relojes Circadianos/genética , Criptocromos/genética , Criptocromos/metabolismo , ADN/genética , ADN/metabolismo , Elementos E-Box/genética , Retroalimentación Fisiológica , Masculino , Ratones , Datos de Secuencia Molecular , Mutación , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Regiones Promotoras Genéticas/genética , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA