Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731875

RESUMEN

Mass spectrometry has become the most prominent yet evolving technology in quantitative proteomics. Today, a number of label-free and label-based approaches are available for the relative and absolute quantification of proteins and peptides. However, the label-based methods rely solely on the employment of stable isotopes, which are expensive and often limited in availability. Here we propose a label-based quantification strategy, where the mass difference is identified by the differential alkylation of cysteines using iodoacetamide and acrylamide. The alkylation reactions were performed under identical experimental conditions; therefore, the method can be easily integrated into standard proteomic workflows. Using high-resolution mass spectrometry, the feasibility of this approach was assessed with a set of tryptic peptides of human serum albumin. Several critical questions, such as the efficiency of labeling and the effect of the differential alkylation on the peptide retention and fragmentation, were addressed. The concentration of the quality control samples calculated against the calibration curves were within the ±20% acceptance range. It was also demonstrated that heavy labeled peptides exhibit a similar extraction recovery and matrix effect to light ones. Consequently, the approach presented here may be a viable and cost-effective alternative of stable isotope labeling strategies for the quantification of cysteine-containing proteins.


Asunto(s)
Acrilamida , Cisteína , Yodoacetamida , Proteómica , Yodoacetamida/química , Alquilación , Cisteína/química , Cisteína/análisis , Acrilamida/química , Acrilamida/análisis , Humanos , Proteómica/métodos , Espectrometría de Masas/métodos , Marcaje Isotópico/métodos , Péptidos/química , Péptidos/análisis , Espectrometría de Masas en Tándem/métodos
2.
Molecules ; 28(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446784

RESUMEN

Knowledge of the physical and chemical properties of phospholipids, such as phase transition temperatures (Tc), is of great importance in order to reveal the functionalities of biological and artificial membranes. Our research group developed an oscillatory rheological method for the simple and rapid determination of phase transition temperatures (Tc). The phospholipids constructing the membranes undergo conformational changes at their Tc, which cause alterations of viscoelastic properties of the molecules. The oscillatory technique recommended by us proved to be appropriate to reveal the altered molecular properties of phospholipids as tracking the slightest changes in the viscoelasticity. Our study demonstrates the abrupt changes in rheological properties at Tc for the following phospholipids: 1,2-Dimyristoyl-sn-glycero-3-Phosphocholine (DMPC), 1,2-Dipalmitoyl-sn-glycero-3-Phosphatidylcholine (DPPC), and 1,2-Distearoyl-sn-glycero-3-Phosphocholine (DSPC), proving that the applied methodology is adequate for determining the Tc of phospholipids.


Asunto(s)
Membrana Dobles de Lípidos , Fosfolípidos , Fosfolípidos/química , Temperatura de Transición , Membrana Dobles de Lípidos/química , Temperatura , Transición de Fase , 1,2-Dipalmitoilfosfatidilcolina/química
3.
Molecules ; 26(19)2021 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-34641547

RESUMEN

A high-resolution HILIC-MS/MS method was developed to analyze anthranilic acid derivatives of N-glycans released from human serum alpha-1-acid glycoprotein (AGP). The method was applied to samples obtained from 18 patients suffering from high-risk malignant melanoma as well as 19 healthy individuals. It enabled the identification of 102 glycan isomers separating isomers that differ only in sialic acid linkage (α-2,3, α-2,6) or in fucose positions (core, antenna). Comparative assessment of the samples revealed that upregulation of certain fucosylated glycans and downregulation of their nonfucosylated counterparts occurred in cancer patients. An increased ratio of isomers with more α-2,6-linked sialic acids was also observed. Linear discriminant analysis (LDA) combining 10 variables with the highest discriminatory power was employed to categorize the samples based on their glycosylation pattern. The performance of the method was tested by cross-validation, resulting in an overall classification success rate of 96.7%. The approach presented here is significantly superior to serological marker S100B protein in terms of sensitivity and negative predictive power in the population studied. Therefore, it may effectively support the diagnosis of malignant melanoma as a biomarker.


Asunto(s)
Melanoma/sangre , Orosomucoide/metabolismo , Biomarcadores de Tumor/sangre , Cromatografía/métodos , Glicosilación , Humanos , Polisacáridos/sangre , Espectrometría de Masas en Tándem/métodos , ortoaminobenzoatos/química
4.
Pharm Dev Technol ; 26(3): 253-261, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33307920

RESUMEN

Due to their light consistency and good spreadability, aqueous foams are considered as convenient and highly accepted drug carrier systems that are of great importance in the field of topical drug delivery. The production of a stable, easy to dose, preferably environmentally harmless foam formulation is challenging. Therefore, foam characterisation requires a complex approach: several tests are to be performed throughout the formulation. Our study primarily aims to investigate the quality attributes of propellant-free foam-forming additives. Throughout the research, we focused on acquiring knowledge about the properties of pharmaceutical excipients suitable for foam formulations and their effect on foam characteristics. Not only were the relative foam density, actuated foam weight and the foam collapse tendencies studied, but also the initial liquid properties. Along with surface tension determination, bubble-forming experiments were carried out. The bubble size and rate of formation, standardised by using a texture analyser, were followed by image analysis. Analysing the bubble-forming properties of dilute surfactant solutions allows assumptions on the properties of foam formed from the more concentrated solutions. The size and number of bubbles in the produced foams are related to the kinetics of single bubble formation. For comparison, commercially available medicated foams were studied.


Asunto(s)
Portadores de Fármacos/química , Excipientes/química , Preparaciones Farmacéuticas/administración & dosificación , Tensión Superficial , Tensoactivos/química , Agua/química
5.
AAPS PharmSciTech ; 22(1): 14, 2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33377174

RESUMEN

Most of the commercially available pharmaceutical products for oral administration route are marketed in the tablet dosage forms. However, compression of multiparticulate systems is a challenge for the pharmaceutical research and industry, especially if the individual unit is a coated particle, as the release of the active ingredient depends on the integrity of the coating. In the present study, polymer-coated pellets tableted with different types of excipients (powder, granules, pellets) then were investigated by various tablet-destructive (microscopic) and tablet non-destructive (microfocus X-ray; microCT) imaging methods. The information obtained from the independent evaluation of the in vitro drug release profiles model is confirmed by the results obtained by image analysis, regardless of whether X-ray or stereomicroscopic images of the coated, tableted pellets were used for image analysis. The results of this study show that the novel easy-to-use, fast, and non-destructive MFX method is a good alternative to the already used microscopic image analysis methods regarding the characterization of particulates, compressed into tablets.


Asunto(s)
Química Farmacéutica/métodos , Administración Oral , Implantes de Medicamentos , Liberación de Fármacos , Excipientes , Polímeros , Polvos , Solubilidad , Comprimidos
6.
AAPS PharmSciTech ; 20(8): 314, 2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31529175

RESUMEN

Baicalin is a flavone glycoside extracted from Scutellaria baicalensis, a traditional Chinese herbal medicine. Numerous pharmacological effects of baicalin were reported (e.g. antioxidant, anxiolytic); nevertheless, the most important physicochemical properties influencing the pharmacokinetic behaviour and the concomitant oral bioavailability have not yet been described in a comprehensive study. The aim of this project was to characterize the acid-base, lipophilicity, biorelevant solubility and permeability properties of the drug substance and providing scientific data to support the dosage form design. Another important objective was the comparative evaluation of six various baicalin-cyclodextrin (CD) inclusion complexes along with the creation of a suitable Drug Delivery System (DDS) for this BCS IV drug. Biorelevant profiling was carried out by NMR-pH titrations, saturation shake-flask and distribution coefficients (logP) measurements, while CD inclusion studies were fulfilled by experimental methods (phase solubility, 1H/13C NMR, 2D ROESY) and computational approaches. Due to low aqueous solubility (67.03 ± 1.60 µg/ml) and low permeability (Papp = 0.037 × 10-6 cm/s), baicalin is classified as BCS IV. The γ-CD complexation significantly increased the solubility of baicalin (~ 5 times). The most promoted chemical shift change occurred in baicalin-γ-CD complex. Computational studies showed disparate binding pattern for baicalin in case of ß- and γ-CD; furthermore, the calculated complexation energy was - 162.4 kJ mol-1 for ß-CD, while it was significantly stronger for γ-CD (- 181.5 kJ mol-1). The physicochemical and structural information of baicalin and its CD complexes introduced herein can create molecular basis for a promising DDS with enhanced bioavailability containing a bioactive phytopharmacon.


Asunto(s)
Antineoplásicos Fitogénicos/química , Ciclodextrinas/química , Flavonoides/química , Antineoplásicos Fitogénicos/administración & dosificación , Disponibilidad Biológica , Sistemas de Liberación de Medicamentos , Flavonoides/administración & dosificación , Lípidos/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Permeabilidad , Solubilidad , Termodinámica
7.
Phytother Res ; 32(8): 1647-1650, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29672961

RESUMEN

The use and significance of baicalin, the main bioactive component found in Radix Scutellaria, have been on the rise due to its interesting pharmacological properties. Baicalin, a low passive permeability compound, is directly absorbed from the upper intestine and its hepatic elimination is dominant. However, interaction but no transport studies have implicated organic anion­transporting polypeptides in its cellular uptake. By using mammalian cells stably expressing the uptake transporters of interest, we are showing that baicalin is a potent substrate of Organic anion­transporting polypeptide 2B1 (OATP2B1) and less potent substrate of OATP1B3. OATP2B1 and OATP1B3 transport baicalin and may play a role in the hepatic uptake of baicalin formed in the intestine.


Asunto(s)
Flavonoides/metabolismo , Transportadores de Anión Orgánico/metabolismo , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/metabolismo , Animales , Transporte Biológico , Perros , Células HEK293 , Humanos , Mucosa Intestinal/metabolismo , Hígado/metabolismo , Células de Riñón Canino Madin Darby
8.
Acta Pharm Hung ; 86(1): 3-11, 2016.
Artículo en Húngaro | MEDLINE | ID: mdl-27295872

RESUMEN

Mass spectrometry is a highly sensitive high-throughput instrumental analytical technique. It is used to determine the molecular mass, but also gives information on molecular structure amd is used for quantitation as well. Although it was developed over 100 years ago, it continues to evolve, both with respect to figures of merit (like sensitivity) and with respect to applications in various novel fields of science and technology. Mass spectrometry is capable of studying macromolecules (like proteins and protein complexes), and has very high sensitivity, now compounds at the atto- or zeptomol level can also be studied. Mass spectrometry can be coupled to separation techniques, and can be used to analyze complex mixtures, trace level compounds in biological matrices like active pharmaceutical ingredients or metabolites. In recent years in proteomics research has become a major new direction. In the present review we briefly introduce basic mass spectrometry techniques (ion surces, analyzers), combinations with chromatography (GC/MS, HPLC/MS), CEI MS) and tandem mass spectrometry. We also introduce two novel methods, mass spectrometry "imaging" and "lab-on-a-chip" technology.


Asunto(s)
Arabidopsis/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Cromatografía de Gases y Espectrometría de Masas/tendencias , Humanos , Espectrometría de Masas/instrumentación , Espectrometría de Masas/métodos , Espectrometría de Masas/tendencias , Estructura Molecular , Proteínas/química , Proteómica/métodos , Proteómica/tendencias , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masas en Tándem/tendencias
9.
Phytother Res ; 29(12): 1987-90, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26400418

RESUMEN

Baicalein, the aglycone formed by hydrolysis of baicalin in the intestine, is well absorbed by passive diffusion but subjected to extensive intestinal glucuronidation. Efflux of baicalin, the low passive permeability glucuronide of baicalein from enterocytes, likely depends on a carrier-mediated transport. The present study was designed to explore potential drug-herb interaction by investigating the inhibitory effect of baicalin on the transport of reporter substrates by transporters and to identify the transporters responsible for the efflux of baicalin from enterocytes and hepatocytes. The interaction of baicalin with specific ABC transporters was studied using membranes from cells overexpressing human BCRP, MDR1, MRP2, MRP3 and MRP4. Baicalin was tested for its potential to inhibit vesicular transport by these transporters. The transport of baicalin by the selected transporters was also investigated. Transport by BCRP, MRP3 and MRP4 was inhibited by baicalin with an IC50 of 3.41 ± 1.83 µM, 14.01 ± 2.51 µM and 14.39 ± 5.69 µM respectively. Inhibition of MDR1 (IC50 = 94.84 ± 31.10 µM) and MRP2 (IC50 = 210.13 ± 110.49 µM) was less potent. MRP2 and BCRP are the apical transporters of baicalin that may mediate luminal efflux in enterocytes and biliary efflux in hepatocytes. The basolateral efflux of baicalin is likely mediated by MRP3 and MRP4 both in enterocytes and hepatocytes. Via inhibition of transport by ABC transporters, baicalin could interfere with the absorption and disposition of drugs.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Enterocitos/efectos de los fármacos , Flavonoides/farmacología , Hepatocitos/efectos de los fármacos , Interacciones de Hierba-Droga , Transporte Biológico/efectos de los fármacos , Enterocitos/metabolismo , Glucurónidos/farmacología , Hepatocitos/metabolismo , Humanos
10.
Acta Pharm Hung ; 85(4): 139-43, 2015.
Artículo en Húngaro | MEDLINE | ID: mdl-26964402

RESUMEN

Nowadays, large part of the population in Hungary is affected by the dry eye disease or symptom. Most of these magistral pharmaceuticals (FoNo VI) compared to the industrial products have disadvantages. They are not compatible with contact lenses, because of the preservatives and after opening they can be used only for seven days. In our experiments we used sodium-perborate as preservative, which could be a solution for the problems mentioned above. Our results indicate that the sodium-perborate sterilized the solution and resists against microbiological contamination. Its preservative effect maintained for more than four weeks. Our further purpose is to develop a new pharmacy drug preparation method to find an effective solution for the microbiological stability-related problems of artificial tears.


Asunto(s)
Boratos/farmacología , Composición de Medicamentos/métodos , Contaminación de Medicamentos/prevención & control , Gotas Lubricantes para Ojos/química , Conservadores Farmacéuticos/efectos adversos , Química Farmacéutica , Síndromes de Ojo Seco/tratamiento farmacológico , Humanos , Hungría , Gotas Lubricantes para Ojos/síntesis química , Gotas Lubricantes para Ojos/farmacología , Factores de Tiempo
11.
Eur J Pharm Sci ; 194: 106704, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38228279

RESUMEN

Microparticles have unique benefits in the formulation of multiparticulate and multi-unit type pharmaceutical dosage forms allowing improved drug safety and efficacy with favorable pharmacokinetics and patient centricity. On the other hand, the above advantages are served by high and well reproducible quality attributes of the medicinal product where even flexible design and controlled processability offer success as well as possible longer product life-cycle for the manufacturers. Moreover, the specific demands of patients can be taken into account, including simplified dosing regimens, flexible dosage, drug combinations, palatability, and ease of swallowing. In the more than 70 years since the first modified-release formulation appeared on the market, many new formulations have been marketed and many publications have appeared in the literature. More unique and newer pharmaceutical technologies and excipients have become available for producing tailor-made particles with micrometer dimensions and beyond. All these have contributed to the fact that the sub-units (e.g. minitablets, pellets, microspheres) that make up a multiparticulate system can vary widely in composition and properties. Some units have mucoadhesive properties and others can float to contribute to a suitable release profile that can be designed for the multiparticulate formula as a whole. Nowadays, there are some available formulations on the market, which are able to release the active substance even for several months (3 or 6 months depending on the type of treatment). In this review, the latest developments in technologies that have been used for a long time are presented, as well as innovative solutions such as the applicability of 3D printing to produce subunits of multiparticulate systems. Furthermore, the diversity of multiparticulate systems, different routes of administration are also presented, touching the ones which are capable of carrying the active substance as well as the relevant, commercially available multiparticle-based medical devices. The versatility in size from 1 µm and multiplicity of formulation technologies promise a solid foundation for the future applications of dosage form design and development.


Asunto(s)
Sistemas de Liberación de Medicamentos , Excipientes , Humanos , Preparaciones Farmacéuticas
12.
PLoS One ; 19(4): e0299501, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38603673

RESUMEN

Mathematical models of epidermal and dermal transport are essential for optimization and development of products for percutaneous delivery both for local and systemic indication and for evaluation of dermal exposure to chemicals for assessing their toxicity. These models often help directly by providing information on the rate of drug penetration through the skin and thus on the dermal or systemic concentration of drugs which is the base of their pharmacological effect. The simulations are also helpful in analyzing experimental data, reducing the number of experiments and translating the in vitro investigations to an in-vivo setting. In this study skin penetration of topically administered caffeine cream was investigated in a skin-on-a-chip microfluidic diffusion chamber at room temperature and at 32°C. Also the transdermal penetration of caffeine in healthy and diseased conditions was compared in mouse skins from intact, psoriatic and allergic animals. In the last experimental setup dexamethasone, indomethacin, piroxicam and diclofenac were examined as a cream formulation for absorption across the dermal barrier. All the measured data were used for making mathematical simulation in a three-compartmental model. The calculated and measured results showed a good match, which findings indicate that our mathematical model might be applied for prediction of drug delivery through the skin under different circumstances and for various drugs in the novel, miniaturized diffusion chamber.


Asunto(s)
Cafeína , Absorción Cutánea , Animales , Ratones , Cafeína/farmacología , Composición de Medicamentos , Microfluídica , Administración Cutánea , Piel/metabolismo , Modelos Teóricos
13.
Acta Pharm Hung ; 83(4): 107-20, 2013.
Artículo en Húngaro | MEDLINE | ID: mdl-24575657

RESUMEN

Drug interaction is a process during which a drug's fate in the body or its pharmacological properties are altered by an influencing factor. The extent of the drug interaction's effect can vary. The interaction could result from the modulation by another drug, food, alcohol, caffeine, narcotics, a drug influencing absorption or smoking. Moreover, transporter interactions with smoking could also have a major impact on many drug's efficacy. Clinically relevant drug interactions with smoking were classified in terms of their effect: pharmacokinetic, pharmacodynamic and transporter interactions. Policyclic aromatic carbohydrates, found in cigarette smoke, have enzyme inducing properties. The interaction affects mainly the hepatic isoenzyme CYP1A2. Interactions caused by smoking have an effect on all drugs being substrates of and therefore metabolised by CYP1A2. Pharmacokinetic alteration can also occur during the absorption, distribution and elimination process. The pharmacodynamic interactions are mainly caused by the effects of nicotine, a cigarette smoke component. Through interactions, smoking could also modify the activity of transporter proteins, altering this way the ADME properties of many drugs. Since smoking is one of the deadliest artefact in the history of human civilisation, identifying drug interactions with smoking is the physician's and pharmacist's major responsibility and task. Moreover, it is necessary to identify the patient's smoking habits during a medical treatment. This review aims to investigate the main types of drug interactions (PK/PD), identify factors influencing the activity of CYP enzymes and transporters, and also summarize the mechanisms of the most important drug interactions with smoking and their clinically relevant consequences (Table II-VI.). Drugs, with effects somehow altered by smoking-interactions, have been studied.


Asunto(s)
Interacciones Farmacológicas , Drogas en Investigación/farmacología , Fumar/metabolismo , Analgésicos/farmacología , Antiarrítmicos/farmacología , Antiinflamatorios no Esteroideos/farmacología , Antihipertensivos/farmacología , Transporte Biológico , Drogas en Investigación/farmacocinética , Antagonistas de los Receptores H2 de la Histamina , Humanos , Psicotrópicos/farmacología
14.
Acta Pharm Hung ; 83(4): 134-42, 2013.
Artículo en Húngaro | MEDLINE | ID: mdl-24575659

RESUMEN

The use of multiparticulate drug delivery systems can contribute to more efficient and safe therapy while stability and incompatibility problems can be avoided as well. The aim of the present work was to review the possible ways of production of pellets containing multiparticulate units and studying the most important factors influencing the product quality attributes after tablet compression. The relationship between the formulation variables (compression pressures, different amounts of tableting excipients) and the dissolution profile of the gastroresistant coated beads were investigated.


Asunto(s)
Química Farmacéutica/métodos , Sistemas de Liberación de Medicamentos , Implantes de Medicamentos , Comprimidos/síntesis química , Excipientes/química
15.
Gels ; 9(6)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37367140

RESUMEN

Controlling rheological properties offers the opportunity to gain insight into the physical characteristics, structure, stability and drug release rate of formulations. To better understand the physical properties of hydrogels, not only rotational but also oscillatory experiments should be performed. Viscoelastic properties, including elastic and viscous properties, are measured using oscillatory rheology. The gel strength and elasticity of hydrogels are of great importance for pharmaceutical development as the application of viscoelastic preparations has considerably expanded in recent decades. Viscosupplementation, ophthalmic surgery and tissue engineering are just a few examples from the wide range of possible applications of viscoelastic hydrogels. Hyaluronic acid, alginate, gellan gum, pectin and chitosan are remarkable representatives of gelling agents that attract great attention applied in biomedical fields. This review provides a brief summary of rheological properties, highlighting the viscoelasticity of hydrogels with great potential in biomedicine.

16.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38139785

RESUMEN

In this review, an extensive analysis of dry powder inhalers (DPIs) is offered, focusing on their characteristics, formulation, stability, and manufacturing. The advantages of pulmonary delivery were investigated, as well as the significance of the particle size in drug deposition. The preparation of DPI formulations was also comprehensively explored, including physico-chemical characterization of powders, powder processing techniques, and formulation considerations. In addition to manufacturing procedures, testing methods were also discussed, providing insights into the development and evaluation of DPI formulations. This review also explores the design basics and critical attributes specific to DPIs, highlighting the significance of their optimization to achieve an effective inhalation therapy. Additionally, the morphology and stability of 3 DPI capsules (Spiriva, Braltus, and Onbrez) were investigated, offering valuable insights into the properties of these formulations. Altogether, these findings contribute to a deeper understanding of DPIs and their development, performance, and optimization of inhalation dosage forms.

17.
Nanomaterials (Basel) ; 13(16)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37630925

RESUMEN

Janus-faced viscoelastic gelling agents-possessing both elastic and viscous characteristics-provide materials with unique features including strengthening ability under stress and a liquid-like character with lower viscosities under relaxed conditions. The mentioned multifunctional character is manifested in several body fluids such as human tears, synovial liquids, skin tissues and mucins, endowing the fluids with a special physical resistance property that can be analyzed by dynamic oscillatory rheology. Therefore, during the development of pharmaceutical or cosmetical formulations-with the intention of mimicking the physiological conditions-rheological studies on viscoelasticity are strongly recommended and the selection of viscoelastic preparations is highlighted. In our study, we aimed to determine the viscoelasticity of various liposomal dispersions. We intended to evaluate the impact of lipid concentration, the presence of cholesterol or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and the gelling agents polyvinyl alcohol (PVA) and hydroxyethylcellulose (HEC) on the viscoelasticity of vesicular systems. Furthermore, the effect of two model drugs (phenyl salicylate and caffeine) on the viscoelastic behavior of liposomal systems was studied. Based on our measurements, the oscillation rheological properties of the liposomal formulations were influenced both by the composition and the lamellarity/size of the lipid vesicles.

18.
Pharmaceutics ; 15(5)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37242706

RESUMEN

α-Aminophosphonates are organophosphorus compounds with an obvious similarity with α-amino acids. Owing to their biological and pharmacological characteristics, they have attracted the attention of many medicinal chemists. α-Aminophosphonates are known to exhibit antiviral, antitumor, antimicrobial, antioxidant and antibacterial activities, which can all be important in pathological dermatological conditions. However, their ADMET properties are not well studied. The aim of the current study was to provide preliminary information about the skin penetration of three preselected α-aminophosphonates when applying them as topical cream formulations in static and dynamic diffusion chambers. The results indicate that aminophosphonate 1a, without any substituent in the para position, shows the best release from the formulation and the highest absorption through the excised skin. However, based on our previous study, the in vitro pharmacological potency was higher in the case of para-substituted molecules 1b and 1c. The particle size and rheological studies revealed that the 2% cream of aminophosphonate 1a was the most homogenous formulation. In conclusion, the most promising molecule was 1a, but further experiments are proposed to uncover the possible transporter interactions in the skin, optimize the topical formulations and improve PK/PD profiles in case of transdermal delivery.

19.
Pharmaceutics ; 15(1)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36678907

RESUMEN

Particle size reduction is a commonly used process to improve the solubility and the dissolution of drug formulations. The solubility of a drug in the gastrointestinal tract is a crucial parameter, because it can greatly influence the bioavailability. This work provides a comprehensive investigation of the effect of the particle size, pH, biorelevant media and polymers (PVA and PVPK-25) on the solubility and dissolution of drug formulations using three model compounds with different acid-base characteristics (papaverine hydrochloride, furosemide and niflumic acid). It was demonstrated that micronization does not change the equilibrium solubility of a drug, but it results in a faster dissolution. In contrast, nanonization can improve the equilibrium solubility of a drug, but the selection of the appropriate excipient used for nanonization is essential, because out of the two used polymers, only the PVPK-25 had an increasing effect on the solubility. This phenomenon can be explained by the molecular structure of the excipients. Based on laser diffraction measurements, PVPK-25 could also inhibit the aggregation of the particles more effectively than PVA, but none of the polymers could hold the nanonized samples in the submicron range until the end of the measurements.

20.
Geroscience ; 45(5): 2927-2938, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37338780

RESUMEN

The SARS-CoV-2 virus is still causing a worldwide problem. The virus settles primarily on the nasal mucosa, and the infection and its course depend on individual susceptibility. Our aim was to investigate the nasopharynx composition's role in the individual susceptibility. During the first phase of SARS-CoV-2 pandemic, nasopharyngeal microbiome samples of close contact unvaccinated patients were investigated by 16S rRNA analysis and by culturing. The whole genome of cultured Corynebacteria was sequenced. The relative expression of ACE2, TMPRSS2, and cathepsin L on Caco-2 cells and the strength of S1-ACE2 binding were determined in the presence of Corynebacteria. From 55 close contacts exposed to identical SARS-CoV-2 exposure, 26 patients became infected and 29 remained uninfected. The nasopharyngeal microbiome analysis showed significantly higher abundance of Corynebacteria in uninfected group. Corynebacterium accolens could be cultivated only from uninfected individuals and Corynebacterium propinquum from both infected and uninfected. Corynebacteria from uninfected patient significantly reduced the ACE2 and cathepsin L expression. C. accolens significantly reduced the TMPRSS2 expression compared to other Corynebacteria. Furthermore, Corynebacterium spp. weakened the binding of the S1-ACE2. Most C. accolens isolates harbored the TAG lipase LipS1 gene. Based on these results, the presence of Corynebacterium spp. in the nasopharyngeal microbiota, especially C. accolens strains, could reduce the individual susceptibility to SARS-CoV-2 infection by several mechanisms: by downregulation the ACE2, the TMPRSS2 receptors, and cathepsin L in the host; through the inhibition of S1-ACE2 binding; and lipase production. These results suggest the use of C. accolens strains as probiotics in the nasopharynx in the future.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Catepsina L , Enzima Convertidora de Angiotensina 2 , ARN Ribosómico 16S , Células CACO-2 , Corynebacterium , Nasofaringe/microbiología , Lipasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA