Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Sleep Res ; 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488062

RESUMEN

Certain neurophysiological characteristics of sleep, in particular slow oscillations (SOs), sleep spindles, and their temporal coupling, have been well characterised and associated with human memory abilities. Delta waves, which are somewhat higher in frequency and lower in amplitude compared to SOs, and their interaction with spindles have only recently been found to play a critical role in memory processing of rodents, through a competitive interaction between SO-spindle and delta-spindle coupling. However, human studies that comprehensively address delta wave interactions with spindles and SOs, as well as their functional role for memory are still lacking. Electroencephalographic data were acquired across three naps of 33 healthy older human participants (17 female) to investigate delta-spindle coupling and the interplay between delta- and SO-related activity. Additionally, we determined intra-individual stability of coupling measures and their potential link to the ability to form novel memories in a verbal memory task. Our results revealed weaker delta-spindle compared to SO-spindle coupling. Contrary to our initial hypothesis, we found no evidence for an opposing dependency between SO- and delta-related activities during non-rapid eye movement sleep. Moreover, the ratio between SO- and delta-nested spindles rather than SO-spindle and delta-spindle coupling measures by themselves predicted the ability to form novel memories best. In conclusion, our results do not confirm previous findings in rodents on competitive interactions between delta activity and SO-spindle coupling in older adults. However, they support the hypothesis that SO, delta wave, and spindle activity should be jointly considered when aiming to link sleep physiology and memory formation.

2.
Neuromodulation ; 26(8): 1592-1601, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35981956

RESUMEN

BACKGROUND: Oscillatory rhythms during sleep, such as slow oscillations (SOs) and spindles and, most importantly, their coupling, are thought to underlie processes of memory consolidation. External slow oscillatory transcranial direct current stimulation (so-tDCS) with a frequency of 0.75 Hz has been shown to improve this coupling and memory consolidation; however, effects varied quite markedly between individuals, studies, and species. In this study, we aimed to determine how precisely the frequency of stimulation must match the naturally occurring SO frequency in individuals to best improve SO-spindle coupling. Moreover, we systematically tested stimulation durations necessary to induce changes. MATERIALS AND METHODS: We addressed these questions by comparing so-tDCS with individualized frequency to standardized frequency of 0.75 Hz in a within-subject design with 28 older participants during napping while stimulation train durations were systematically varied between 30 seconds, 2 minutes, and 5 minutes. RESULTS: Stimulation trains as short as 30 seconds were sufficient to modulate the coupling between SOs and spindle activity. Contrary to our expectations, so-tDCS with standardized frequency indicated stronger aftereffects regarding SO-spindle coupling than individualized frequency. Angle and variance of spindle maxima occurrence during the SO cycle were similarly modulated. CONCLUSIONS: In sum, short stimulation trains were sufficient to induce significant changes in sleep physiology, allowing for more trains of stimulation, which provides methodological advantages and possibly even larger behavioral effects in future studies. Regarding individualized stimulation frequency, further options of optimization need to be investigated, such as closed-loop stimulation, to calibrate stimulation frequency to the SO frequency at the time of stimulation onset. CLINICAL TRIAL REGISTRATION: The Clinicaltrials.gov registration number for the study is NCT04714879.


Asunto(s)
Consolidación de la Memoria , Estimulación Transcraneal de Corriente Directa , Humanos , Sueño/fisiología , Consolidación de la Memoria/fisiología , Electroencefalografía
3.
Hum Brain Mapp ; 43(11): 3416-3426, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35373873

RESUMEN

Neural mechanisms of behavioral improvement induced by repeated transcranial direct current stimulation (tDCS) combined with cognitive training are yet unclear. Previously, we reported behavioral effects of a 3-day visuospatial memory training with concurrent anodal tDCS over the right temporoparietal cortex in older adults. To investigate intervention-induced neural alterations we here used functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) datasets available from 35 participants of this previous study, acquired before and after the intervention. To delineate changes in whole-brain functional network architecture, we employed eigenvector centrality mapping. Gray matter alterations were analyzed using DTI-derived mean diffusivity (MD). Network centrality in the bilateral posterior temporooccipital cortex was reduced after anodal compared to sham stimulation. This focal effect is indicative of decreased functional connectivity of the brain region underneath the anodal electrode and its left-hemispheric homolog with other "relevant" (i.e., highly connected) brain regions, thereby providing evidence for reorganizational processes within the brain's network architecture. Examining local MD changes in these clusters, an interaction between stimulation condition and training success indicated a decrease of MD in the right (stimulated) temporooccipital cluster in individuals who showed superior behavioral training benefits. Using a data-driven whole-brain network approach, we provide evidence for targeted neuromodulatory effects of a combined tDCS-and-training intervention. We show for the first time that gray matter alterations of microstructure (assessed by DTI-derived MD) may be involved in tDCS-enhanced cognitive training. Increased knowledge on how combined interventions modulate neural networks in older adults, will help the development of specific therapeutic interventions against age-associated cognitive decline.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Anciano , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Imagen de Difusión Tensora , Sustancia Gris/diagnóstico por imagen , Humanos , Aprendizaje , Imagen por Resonancia Magnética/métodos , Estimulación Transcraneal de Corriente Directa/métodos
4.
Neuroimage ; 224: 117413, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33011418

RESUMEN

Variations in head and brain anatomy determine the strength and distribution of electrical fields in humans and may account for inconsistent behavioral and neurophysiological results in transcranial electrical stimulation (tES) studies. However, it is insufficiently understood which anatomical features contribute to the variability of the modelled electric fields, and if their impact varies across age groups. In the present study, we tested the associations of global head anatomy, indexed by extra- and intra-cranial volumes, with electric field measures, comparing young and older adults. We modelled six "conventional" electrode montages typically used in tES studies using SimNIBS software in 40 individuals (20 young, 20 older adults; 20-35, 64-79 years). We extracted individual electric field strengths and focality values for each montage to identify tissue volumes that account for variability of the induced electric fields in both groups. Linear mixed models explained most of the inter-individual variability of the overall induced field strength in the brain, but not of field focality. Higher absolute head volume and relative volume of skin, skull and cerebrospinal fluid (CSF) were associated with lower overall electric field strengths. Additionally, we found interactions of age group with head volume and CSF, indicating that this relationship was mitigated in the older group. Our results demonstrate the importance to adjust brain stimulation not only according to brain atrophy, but also to additional parameters of head anatomy. Future studies need to elucidate the mechanisms underlying individual variability of tES effects in young and older adults, and verify the usefulness of the proposed models in terms of neurophysiology and behavior in empirical studies.


Asunto(s)
Variación Biológica Poblacional , Encéfalo/anatomía & histología , Electrodos , Cabeza/anatomía & histología , Piel/anatomía & histología , Cráneo/anatomía & histología , Estimulación Transcraneal de Corriente Directa/métodos , Adulto , Factores de Edad , Anciano , Atrofia , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Líquido Cefalorraquídeo/diagnóstico por imagen , Simulación por Computador , Electricidad , Campos Electromagnéticos , Femenino , Cabeza/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tamaño de los Órganos , Piel/diagnóstico por imagen , Cráneo/diagnóstico por imagen , Adulto Joven
5.
Neuroimage ; 223: 117363, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32919057

RESUMEN

Non-invasive transcranial stimulation of cerebellum and primary motor cortex (M1) has been shown to enhance motor learning. However, the mechanisms by which stimulation improves learning remain largely unknown. Here, we sought to shed light on the neural correlates of transcranial direct current stimulation (tDCS) during motor learning by simultaneously recording functional magnetic resonance imaging (fMRI). We found that right cerebellar tDCS, but not left M1 tDCS, led to enhanced sequence learning in the serial reaction time task. Performance was also improved following cerebellar tDCS compared to sham in a sequence production task, reflecting superior training effects persisting into the post-training period. These behavioral effects were accompanied by increased learning-specific activity in right M1, left cerebellum lobule VI, left inferior frontal gyrus and right inferior parietal lobule during cerebellar tDCS compared to sham. Despite the lack of group-level changes comparing left M1 tDCS to sham, activity increase in right M1, supplementary motor area, and bilateral middle frontal cortex, under M1 tDCS, was associated with better sequence performance. This suggests that lack of group effects in M1 tDCS relate to inter-individual variability in learning-related activation patterns. We further investigated how tDCS modulates effective connectivity in the cortico-striato-cerebellar learning network. Using dynamic causal modelling, we found altered connectivity patterns during both M1 and cerebellar tDCS when compared to sham. Specifically, during cerebellar tDCS, negative modulation of a connection from putamen to cerebellum was decreased for sequence learning only, effectively leading to decreased inhibition of the cerebellum. These results show specific effects of cerebellar tDCS on functional activity and connectivity in the motor learning network and may facilitate the optimization of motor rehabilitation involving cerebellar non-invasive stimulation.


Asunto(s)
Cerebelo/fisiología , Aprendizaje/fisiología , Corteza Motora/fisiología , Desempeño Psicomotor/fisiología , Putamen/fisiología , Estimulación Transcraneal de Corriente Directa , Adulto , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiología , Tiempo de Reacción , Adulto Joven
6.
J Neurosci ; 37(15): 4065-4073, 2017 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-28314813

RESUMEN

Transcranial direct current stimulation (tDCS) modulates human behavior, neuronal patterns, and metabolite concentrations, with exciting potential for neurorehabilitation. However, the understanding of tDCS-induced alterations on the neuronal level is incomplete, and conclusions from young adults, in whom the majority of studies have been conducted, cannot be easily transferred to older populations. Here, we investigated tDCS-induced effects in older adults (N = 48; age range, 50-79 years) using magnetic resonance spectroscopy to quantify GABA levels as well as resting-state functional magnetic resonance imaging to assess sensorimotor network strength and interhemispheric connectivity. In a randomized, counterbalanced, crossover design, we applied anodal tDCS (atDCS), cathodal tDCS (ctDCS), and sham tDCS (stDCS) over the left sensorimotor region. We observed a significant reduction of GABA levels after atDCS compared with stDCS, reflecting the preserved neuromodulatory effect of atDCS in older adults. Moreover, resting-state functional coupling was decreased during atDCS compared with stDCS, most likely indicating augmented efficiency in brain network functioning. Increased levels of interhemispheric connectivity with age were diminished by atDCS, suggesting stimulation-induced functional decoupling. Further, the magnitude of atDCS-induced local plasticity was related to baseline functional network strength. Our findings provide novel insight into the neuronal correlates underlying tDCS-induced neuronal plasticity in older adults and thus might help to develop tDCS interventions tailored to the aging brain.SIGNIFICANCE STATEMENT Transcranial direct current stimulation (tDCS) modulates human behavior, neuronal patterns, and metabolite concentrations, with exciting potential for neurorehabilitation. However, the understanding of tDCS-induced alterations on the neuronal level is incomplete, and conclusions from young adults cannot be easily transferred to older populations. We used a systematic multimodal imaging approach to investigate the neurophysiological effects of tDCS in older adults and found stimulation-induced effects on GABA levels, reflecting augmented local plasticity and functional connectivity, suggesting modulation of network efficiency. Our findings may help to reconcile some of the recent reports on the variability of tDCS-induced effects, not only implicating age as a crucial modulating factor, but detailing its specific impact on the functionality of neural networks.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Red Nerviosa/metabolismo , Descanso/fisiología , Corteza Sensoriomotora/metabolismo , Estimulación Transcraneal de Corriente Directa/métodos , Ácido gamma-Aminobutírico/metabolismo , Anciano , Estudios Cruzados , Femenino , Humanos , Masculino , Persona de Mediana Edad , Plasticidad Neuronal/fisiología
7.
Neuroimage ; 176: 71-82, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29679735

RESUMEN

Functional magnetic resonance imaging (fMRI) studies have suggested that advanced age may mediate the effects of transcranial direct current stimulation (tDCS) on brain function. However, studies directly comparing neural tDCS effects between young and older adults are scarce and limited to task-related imaging paradigms. Resting-state (rs-) fMRI, that is independent of age-related differences in performance, is well suited to investigate age-associated differential neural tDCS effects. Three "online" tDCS conditions (anodal, cathodal, sham) were compared in a cross-over, within-subject design, in 30 young and 30 older adults. Active stimulation targeted the left sensorimotor network (active electrode over left sensorimotor cortex with right supraorbital reference electrode). A graph-based rs-fMRI data analysis approach (eigenvector centrality mapping) and complementary seed-based analyses characterized neural tDCS effects. An interaction between anodal tDCS and age group was observed. Specifically, centrality in bilateral paracentral and posterior regions (precuneus, superior parietal cortex) was increased in young, but decreased in older adults. Seed-based analyses revealed that these opposing patterns of tDCS-induced centrality modulation originated from differential effects of tDCS on functional coupling of the stimulated left paracentral lobule. Cathodal tDCS did not show significant effects. Our study provides first evidence for differential tDCS effects on neural network organization in young and older adults. Anodal stimulation mainly affected coupling of sensorimotor with ventromedial prefrontal areas in young and decoupling with posteromedial areas in older adults.


Asunto(s)
Envejecimiento , Encéfalo/fisiología , Estimulación Transcraneal de Corriente Directa , Adulto , Anciano , Mapeo Encefálico , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiología , Corteza Sensoriomotora/fisiología , Adulto Joven
8.
Exp Brain Res ; 236(1): 227-241, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29177817

RESUMEN

Executive functioning of two simultaneous component tasks in dual-task situations is primarily associated with activation of the lateral prefrontal cortex (PFC), as demonstrated in functional imaging studies. However, the precise role of the lateral PFC and the causal relation between this area's activity and executive functioning in dual tasks has exclusively been demonstrated for the left lateral PFC so far. To investigate this relation for the right lateral PFC, we used anodal transcranial direct current stimulation (atDCS; 1 mA, 20 min) in contrast to sham stimulation (1 mA, 30 s) in Experiment 1 (N = 30) as well as cathodal transcranial direct current stimulation (ctDCS; 1 mA, 20 min) in contrast to sham stimulation (1 mA, 30 s) in Experiment 2 (N = 25) over the right inferior frontal junction under conditions of random task order in dual tasks; random dual tasks require decisions on task order and thus high demands on executive functioning. Across these experiments, our results showed different tDCS-related effects: while atDCS improved performance evident from reduced error rates (Experiment 1), ctDCS impaired dual-task performance and increased these rates (Experiment 2). Moreover, baseline performance correlated with tDCS-induced performance changes, indicating that baseline performance was associated with atDCS-induced improvement. Our findings suggest that dual-task performance is causally related to right lateral PFC activation under conditions that require executive functioning as well as cognitive control of task sets and task order.


Asunto(s)
Función Ejecutiva/fisiología , Lateralidad Funcional/fisiología , Corteza Prefrontal/fisiología , Desempeño Psicomotor/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Adolescente , Adulto , Femenino , Humanos , Masculino , Adulto Joven
9.
Neuroimage ; 142: 311-323, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27381076

RESUMEN

Sleep-related consolidation of declarative memories, as well as associated neurophysiological events such as slow oscillatory and spindle activity, deteriorate in the course of aging. This process is accelerated in neurodegenerative disease. Transcranial slow oscillatory stimulation (so-tDCS) during sleep has been shown to enhance slow oscillatory brain activity and thereby improve memory consolidation in young subjects. Here, we investigated whether so-tDCS applied to older adults during an afternoon nap exerts similar effects. Eighteen older human subjects were assessed using visuo-spatial (picture memory, primary, and location memory) and verbal memory tasks before and after a 90-min nap either comprising weak so-tDCS at 0.75Hz over fronto-central location or sham (no) stimulation in a within-subject design. Electroencephalographic activity was recorded throughout the naps and immediate effects of stimulation on brain activity were evaluated. Here, spectral power within three frequency bands of interest were computed, i.e., slow oscillatory activity, slow spindle and fast spindle activity; in 1-min stimulation-free intervals following 5 stimulation blocks. So-tDCS significantly increased frontal slow oscillatory activity as well as fast spindle activity, and significantly improved picture memory retention after sleep. Retention in the location memory subtask and in the verbal memory task was not affected. These findings may indicate a novel strategy to counteract cognitive decline in aging in a convenient manner during brief daytime naps.


Asunto(s)
Envejecimiento/fisiología , Ondas Encefálicas/fisiología , Consolidación de la Memoria/fisiología , Recuerdo Mental/fisiología , Sueño/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad
10.
Neural Plast ; 2016: 4274127, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27298740

RESUMEN

Recently, transcranial alternating current stimulation (tACS) has emerged as a tool to enhance human cognitive processes. Here, we provide a brief summary of the rationale behind tACS-induced effects on task-relevant brain oscillations and associated cognitive functions and review previous studies in young subjects that have applied tACS in cognitive paradigms. Additionally, we present pilot data where we administered theta-tACS (6 Hz) over the temporoparietal cortex and a supraorbital reference for 20 min during implicit language learning in healthy young (mean/SD age: 22/2) and older (mean/SD age: 66/4) adults, in a sham-controlled crossover design. Linear mixed models revealed significantly increased retrieval accuracy following tACS-accompanied associative learning, after controlling for session order and learning success. These data provide the first implementation of tACS during cognitive performance in older adults and support recent studies suggesting that tACS in the theta frequency range may serve as a tool to enhance cognition, possibly through direct modulation of task-relevant brain oscillations. So far, studies have been heterogeneous in their designs, leaving a number of issues to be addressed in future research, including the setup of electrodes and optimal stimulation frequencies to be employed, as well as the interaction with age and underlying brain pathologies in specific patient populations.


Asunto(s)
Envejecimiento/fisiología , Cognición/fisiología , Aprendizaje/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Estimulación Acústica/métodos , Anciano , Estudios Cruzados , Femenino , Estado de Salud , Humanos , Masculino , Recuerdo Mental/fisiología , Persona de Mediana Edad , Estimulación Luminosa/métodos , Proyectos Piloto , Método Simple Ciego , Resultado del Tratamiento , Adulto Joven
11.
J Neurosci ; 33(30): 12470-8, 2013 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-23884951

RESUMEN

The rising proportion of elderly people worldwide will yield an increased incidence of age-associated cognitive impairments, imposing major burdens on societies. Consequently, growing interest emerged to evaluate new strategies to delay or counteract cognitive decline in aging. Here, we assessed immediate effects of anodal transcranial direct current stimulation (atDCS) on cognition and previously described detrimental changes in brain activity attributable to aging. Twenty healthy elderly adults were assessed in a crossover sham-controlled design using functional magnetic resonance imaging (fMRI) and concurrent transcranial DCS administered to the left inferior frontal gyrus. Effects on performance and task-related brain activity were evaluated during overt semantic word generation, a task that is negatively affected by advanced age. Task-absent resting-state fMRI (RS-fMRI) assessed atDCS-induced changes at the network level independent of performance. Twenty matched younger adults served as controls. During sham stimulation, task-related fMRI demonstrated that enhanced bilateral prefrontal activity in older adults was associated with reduced performance. RS-fMRI revealed enhanced anterior and reduced posterior functional brain connectivity. atDCS significantly improved performance in older adults up to the level of younger controls; significantly reduced task-related hyperactivity in bilateral prefrontal cortices, the anterior cingulate gyrus, and the precuneus; and induced a more "youth-like" connectivity pattern during RS-fMRI. Our results provide converging evidence from behavioral analysis and two independent functional imaging paradigms that a single session of atDCS can temporarily reverse nonbeneficial effects of aging on cognition and brain activity and connectivity. These findings may translate into novel treatments to ameliorate cognitive decline in normal aging in the future.


Asunto(s)
Envejecimiento/fisiología , Trastornos del Conocimiento/fisiopatología , Trastornos del Conocimiento/terapia , Imagen por Resonancia Magnética , Desempeño Psicomotor/fisiología , Estimulación Magnética Transcraneal/métodos , Adulto , Anciano , Cognición/fisiología , Conectoma , Estudios Cruzados , Femenino , Lóbulo Frontal/fisiología , Humanos , Masculino , Persona de Mediana Edad , Lóbulo Parietal/fisiología , Corteza Prefrontal/fisiología , Adulto Joven
12.
Gerontology ; 60(1): 3-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24080587

RESUMEN

Cognitive neuroscience of the healthy aging human brain has thus far addressed age-related changes of local functional and structural properties of gray and white matter and their association with declining or preserved cognitive functions. In addition to these localized changes, recent neuroimaging research has attributed an important role to neural networks with a stronger focus on interacting rather than isolated brain regions. The analysis of functional connectivity encompasses task-dependent and -independent synchronous activity in the brain, and thus reflects the organization of the brain in distinct performance-relevant networks. Structural connectivity in white matter pathways, representing the integrity of anatomical connections, underlies the communication between the nodes of these functional networks. Both functional and structural connectivity within these networks have been demonstrated to change with aging, and to have different predictive values for cognitive abilities in older compared to young adults. Structural degeneration has been found in the entire cerebral white matter with greatest deterioration in frontal areas, affecting whole brain structural network efficiency. With regard to functional connectivity, both higher and lower functional coupling has been observed in the aging compared to the young brain. Here, high connectivity within the nodes of specific functional networks on the one hand, and low connectivity to regions outside this network on the other hand, were associated with preserved cognitive functions in aging in most cases. For example, in the language domain, connections between left-hemisphere language-related prefrontal, posterior temporal and parietal areas were described as beneficial, whereas connections between the left and right hemisphere were detrimental for language task performance. Of note, interactions between structural and functional network properties may change in the course of aging and differentially impact behavioral performance in older versus young adults. Finally, studies using noninvasive brain stimulation techniques like transcranial direct current stimulation (tDCS) to simultaneously modulate behavior and functional connectivity support the importance of 'selective connectivity' of aging brain networks for preserved cognitive functions. These studies demonstrate that enhancing task performance by tDCS is paralleled by increased connectivity within functional networks. In this review, we outline the network perspective on healthy brain aging and discuss recent developments in this field.


Asunto(s)
Envejecimiento/fisiología , Envejecimiento/psicología , Encéfalo/fisiología , Adulto , Anciano , Envejecimiento/patología , Encéfalo/patología , Cognición , Imagen de Difusión Tensora , Humanos , Imagen por Resonancia Magnética , Trastornos de la Memoria/patología , Trastornos de la Memoria/fisiopatología , Trastornos de la Memoria/psicología , Red Nerviosa/patología , Red Nerviosa/fisiopatología
13.
Aging Brain ; 5: 100109, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38380149

RESUMEN

Older adults demonstrate difficulties in sequential decision-making, which is partly attributed to under-recruitment of prefrontal networks. It is, therefore, important to understand the mechanisms that may improve this ability. This study investigated the effectiveness of an 18-sessions, home-based cognitive intervention and the neural mechanisms that underpin individual differences in intervention effects. Participants were required to learn sequential choices in a 3-stage Markov decision-making task that would yield the most rewards. Participants were assigned to better or worse responders group based on their performance at the last intervention session (T18). Better responders improved significantly starting from the fifth intervention session while worse responders did not improve across all training sessions. At post-intervention, only better responders showed condition-dependent modulation of the dorsolateral prefrontal cortex (DLPFC) as measured by fNIRS, with higher DLPFC activity in the delayed condition. Despite large individual differences, our data showed that value-based sequential-decision-making and its corresponding neural mechanisms can be remediated via home-based cognitive intervention in some older adults; moreover, individual differences in recruiting prefrontal activities after the intervention are associated with variations in intervention outcomes. Intervention-related gains were also maintained at three months after post-intervention. However, future studies should investigate the potential of combining other intervention methods such as non-invasive brain stimulation with cognitive intervention for older adults who do not respond to the intervention, thus emphasizing the importance of developing individualized intervention programs for older adults.

14.
Neurobiol Aging ; 139: 64-72, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38626525

RESUMEN

Sequence memory is subject to age-related decline, but the underlying processes are not yet fully understood. We analyzed electroencephalography (EEG) in 21 healthy older (60-80 years) and 26 young participants (20-30 years) and compared time-frequency spectra and theta-gamma phase-amplitude-coupling (PAC) during encoding of the order of visually presented items. In older adults, desynchronization in theta (4-8 Hz) and synchronization in gamma (30-45 Hz) power did not distinguish between subsequently correctly and incorrectly remembered trials, while there was a subsequent memory effect for young adults. Theta-gamma PAC was modulated by item position within a sequence for older but not young adults. Specifically, position within a sequence was coded by higher gamma amplitude for successive theta phases for later correctly remembered trials. Thus, deficient differentiation in theta desynchronization and gamma oscillations during sequence encoding in older adults may reflect neurophysiological correlates of age-related memory decline. Furthermore, our results indicate that sequences are coded by theta-gamma PAC in older adults, but that this mechanism might lose precision in aging.


Asunto(s)
Envejecimiento , Memoria , Ritmo Teta , Humanos , Anciano , Anciano de 80 o más Años , Femenino , Adulto , Persona de Mediana Edad , Masculino , Envejecimiento/fisiología , Envejecimiento/psicología , Adulto Joven , Ritmo Teta/fisiología , Memoria/fisiología , Encéfalo/fisiología , Electroencefalografía , Ritmo Gamma/fisiología
15.
Life (Basel) ; 14(5)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38792561

RESUMEN

Remembering objects and their associated location (object-location memory; OLM), is a fundamental cognitive function, mediated by cortical and subcortical brain regions. Previously, the combination of OLM training and transcranial direct current stimulation (tDCS) suggested beneficial effects, but the evidence remains heterogeneous. Here, we applied focal tDCS over the right temporoparietal cortex in 52 participants during a two-day OLM training, with anodal tDCS (2 mA, 20 min) or sham (40 s) on the first day. The focal stimulation did not enhance OLM performance on either training day (stimulation effect: -0.09, 95%CI: [-0.19; 0.02], p = 0.08). Higher electric field magnitudes in the target region were not associated with individual performance benefits. Participants with content-related learning strategies showed slightly superior performance compared to participants with position-related strategies. Additionally, training gains were associated with individual verbal learning skills. Consequently, the lack of behavioral benefits through focal tDCS might be due to the involvement of different cognitive processes and brain regions, reflected by participant's learning strategies. Future studies should evaluate whether other brain regions or memory-relevant networks may be involved in the modulation of object-location associations, investigating other target regions, and further exploring individualized stimulation parameters.

16.
Alzheimers Res Ther ; 16(1): 6, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212815

RESUMEN

BACKGROUND: Repeated sessions of training and non-invasive brain stimulation have the potential to enhance cognition in patients with cognitive impairment. We hypothesized that combining cognitive training with anodal transcranial direct current stimulation (tDCS) will lead to performance improvement in the trained task and yield transfer to non-trained tasks. METHODS: In our randomized, sham-controlled, double-blind study, 46 patients with cognitive impairment (60-80 years) were randomly assigned to one of two interventional groups. We administered a 9-session cognitive training (consisting of a letter updating and a Markov decision-making task) over 3 weeks with concurrent 1-mA anodal tDCS over the left dorsolateral prefrontal cortex (20 min in tDCS, 30 s in sham group). Primary outcome was trained task performance (letter updating task) immediately after training. Secondary outcomes included performance in tasks testing working memory (N-back task), decision-making (Wiener Matrices test) and verbal memory (verbal learning and memory test), and resting-state functional connectivity (FC). Tasks were administered at baseline, at post-assessment, and at 1- and 7-month follow-ups (FU). MRI was conducted at baseline and 7-month FU. Thirty-nine participants (85%) successfully completed the intervention. Data analyses are reported on the intention-to-treat (ITT) and the per-protocol (PP) sample. RESULTS: For the primary outcome, no difference was observed in the ITT (ß = 0.1, 95%-CI [- 1.2, 1.3, p = 0.93] or PP sample (ß = - 0.2, 95%-CI [- 1.6, 1.2], p = 0.77). However, secondary analyses in the N-back working memory task showed that, only in the PP sample, the tDCS outperformed the sham group (PP: % correct, ß = 5.0, 95%-CI [- 0.1, 10.2], p = 0.06, d-prime ß = 0.2, 95%-CI [0.0, 0.4], p = 0.02; ITT: % correct, ß = 3.0, 95%-CI [- 3.9, 9.9], p = 0.39, d-prime ß = 0.1, 95%-CI [- 0.1, 0.3], p = 0.5). Frontoparietal network FC was increased from baseline to 7-month FU in the tDCS compared to the sham group (pFDR < 0.05). Exploratory analyses showed a correlation between individual memory improvements and higher electric field magnitudes induced by tDCS (ρtDCS = 0.59, p = 0.02). Adverse events did not differ between groups, questionnaires indicated successful blinding (incidence rate ratio, 1.1, 95%-CI [0.5, 2.2]). CONCLUSIONS: In sum, cognitive training with concurrent brain stimulation, compared to cognitive training with sham stimulation, did not lead to superior performance enhancements in patients with cognitive impairment. However, we observed transferred working memory benefits in patients who underwent the full 3-week intervention. MRI data pointed toward a potential intervention-induced modulation of neural network dynamics. A link between individual performance gains and electric fields suggested dosage-dependent effects of brain stimulation. Together, our findings do not support the immediate benefit of the combined intervention on the trained function, but provide exploratory evidence for transfer effects on working memory in patients with cognitive impairment. Future research needs to explore whether individualized protocols for both training and stimulation parameters might further enhance treatment gains. TRIAL REGISTRATION: The study is registered on ClinicalTrials.gov (NCT04265378). Registered on 7 February 2020. Retrospectively registered.


Asunto(s)
Disfunción Cognitiva , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Entrenamiento Cognitivo , Memoria a Corto Plazo/fisiología , Disfunción Cognitiva/terapia , Método Doble Ciego , Encéfalo , Corteza Prefrontal
17.
Clin Neurophysiol ; 162: 201-209, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643613

RESUMEN

OBJECTIVE: Electrode positioning errors contribute to variability of transcranial direct current stimulation (tDCS) effects. We investigated the impact of electrode positioning errors on current flow for tDCS set-ups with different focality. METHODS: Deviations from planned electrode positions were determined using data acquired in an experimental study (N = 240 datasets) that administered conventional and focal tDCS during magnetic resonance imaging (MRI). Comparison of individualized electric field modeling for planned and empirically derived "actual" electrode positions was conducted to quantify the impact of positioning errors on the electric field dose in target regions for tDCS. RESULTS: Planned electrode positions resulted in higher current dose in the target regions for focal compared to conventional montages (7-12%). Deviations from planned positions significantly reduced current flow in the target regions, selectively for focal set-ups (26-30%). Dose reductions were significantly larger for focal compared to conventional set-ups (29-43%). CONCLUSIONS: Precise positioning is crucial when using focal tDCS set-ups to avoid significant reductions of current dose in the intended target regions. SIGNIFICANCE: Our results highlight the urgent need to routinely implement methods for improving electrode positioning, minimization of electrode drift, verification of electrode positions before and/or after tDCS and also to consider positioning errors when investigating dose-response relationships, especially for focal set-ups.


Asunto(s)
Electrodos , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Masculino , Femenino , Adulto , Imagen por Resonancia Magnética/métodos , Adulto Joven , Mapeo Encefálico/métodos
18.
Front Neurosci ; 18: 1389651, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957187

RESUMEN

Transcranial direct current stimulation (tDCS) has been studied extensively for its potential to enhance human cognitive functions in healthy individuals and to treat cognitive impairment in various clinical populations. However, little is known about how tDCS modulates the neural networks supporting cognition and the complex interplay with mediating factors that may explain the frequently observed variability of stimulation effects within and between studies. Moreover, research in this field has been characterized by substantial methodological variability, frequent lack of rigorous experimental control and small sample sizes, thereby limiting the generalizability of findings and translational potential of tDCS. The present manuscript aims to delineate how these important issues can be addressed within a neuroimaging context, to reveal the neural underpinnings, predictors and mediators of tDCS-induced behavioral modulation. We will focus on functional magnetic resonance imaging (fMRI), because it allows the investigation of tDCS effects with excellent spatial precision and sufficient temporal resolution across the entire brain. Moreover, high resolution structural imaging data can be acquired for precise localization of stimulation effects, verification of electrode positions on the scalp and realistic current modeling based on individual head and brain anatomy. However, the general principles outlined in this review will also be applicable to other imaging modalities. Following an introduction to the overall state-of-the-art in this field, we will discuss in more detail the underlying causes of variability in previous tDCS studies. Moreover, we will elaborate on design considerations for tDCS-fMRI studies, optimization of tDCS and imaging protocols and how to assure high-level experimental control. Two additional sections address the pressing need for more systematic investigation of tDCS effects across the healthy human lifespan and implications for tDCS studies in age-associated disease, and potential benefits of establishing large-scale, multidisciplinary consortia for more coordinated tDCS research in the future. We hope that this review will contribute to more coordinated, methodologically sound, transparent and reproducible research in this field. Ultimately, our aim is to facilitate a better understanding of the underlying mechanisms by which tDCS modulates human cognitive functions and more effective and individually tailored translational and clinical applications of this technique in the future.

19.
J Neurosci ; 32(5): 1859-66, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22302824

RESUMEN

Excitatory anodal transcranial direct current stimulation (atDCS) can improve human cognitive functions, but neural underpinnings of its mode of action remain elusive. In a cross-over placebo ("sham") controlled study we used functional magnetic resonance imaging (fMRI) to investigate neurofunctional correlates of improved language functions induced by atDCS over a core language area, the left inferior frontal gyrus (IFG). Intrascanner transcranial direct current stimulation-induced changes in overt semantic word generation assessed behavioral modulation; task-related and task-independent (resting-state) fMRI characterized language network changes. Improved word-retrieval during atDCS was paralleled by selectively reduced task-related activation in the left ventral IFG, an area specifically implicated in semantic retrieval processes. Under atDCS, resting-state fMRI revealed increased connectivity of the left IFG and additional major hubs overlapping with the language network. In conclusion, atDCS modulates endogenous low-frequency oscillations in a distributed set of functionally connected brain areas, possibly inducing more efficient processing in critical task-relevant areas and improved behavioral performance.


Asunto(s)
Encéfalo/fisiología , Cognición/fisiología , Estimulación Encefálica Profunda/métodos , Red Nerviosa/fisiología , Desempeño Psicomotor/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Proyectos Piloto , Adulto Joven
20.
Neuroimage ; 83: 513-23, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23867559

RESUMEN

Language abilities are known to deteriorate in aging, possibly related to decreased functional and structural connectivity within specialized brain networks. Here, we investigated syntactic ability in healthy young and older adults using a comprehensive assessment of behavioral performance, task-independent functional (FC) and structural brain connectivity (SC). Seed-based FC originating from left pars opercularis (part of Broca's area) known to support syntactic processes was assessed using resting-state functional magnetic resonance imaging, and SC using fractional anisotropy from diffusion weighted imaging, in the dorsally located superior longitudinal and the ventrally located uncinate fasciculi (SLF, UF) and forceps minor. Young compared to older adults exhibited superior syntactic performance and stronger FC within the mainly left-lateralized syntax network, which was beneficial for performance. In contrast, in older adults, FC within the mainly left-lateralized syntax network was reduced and did not correlate with performance; inter-hemispheric FC to right inferior frontal and angular gyri was detrimental for performance. In both groups, performance was positively correlated with inter-hemispheric SC. For intra-hemispheric SC, performance correlated with structural integrity of SLF in young adults and with integrity of UF in older adults. Our data show that reduced syntactic ability in older adults is associated with decreased FC within dedicated syntax networks. Moreover, young adults showed an association of syntactic ability with structural integrity of the dorsal tract, while older adults rely more on ventral fibers. In sum, our study provided novel insight into the relationship between connectivity and syntactic performance in young and older adults. In addition to elucidating age-related changes in syntax networks and their behavioral relevance, our results contribute to a better understanding of age-related changes in functional and structural brain organization in general, an important prerequisite for developing novel strategies to counteract age-related cognitive decline.


Asunto(s)
Envejecimiento/patología , Envejecimiento/fisiología , Encéfalo/anatomía & histología , Encéfalo/fisiología , Red Nerviosa/anatomía & histología , Red Nerviosa/fisiología , Semántica , Análisis y Desempeño de Tareas , Adulto , Anciano , Mapeo Encefálico , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA