Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Stroke Cerebrovasc Dis ; 27(8): 2158-2165, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29673616

RESUMEN

BACKGROUND: Developing new medicines is a complex process where understanding the reasons for both failure and success takes us forward. One gap in our understanding of most candidate stroke drugs before clinical trial is whether they have a protective effect on human tissues. NXY-059 is a spin-trap reagent hypothesized to have activity against the damaging oxidative biology which accompanies ischemic stroke. Re-examination of the preclinical in vivo dataset for this agent in the wake of the failed SAINT-II RCT highlighted the presence of a range of biases leading to overestimation of the magnitude of NXY-059's effects in laboratory animals. Therefore, NXY-059 seemed an ideal candidate to evaluate in human neural tissues to determine whether human tissue testing might improve screening efficiency. MATERIALS AND METHODS: The aim of this randomized and blinded study was to assess the effects of NXY-059 on human stem cell-derived neurons in the presence of ischemia-like injury induced by oxygen glucose deprivation or oxidative stress induced by hydrogen peroxide or sodium nitroprusside. RESULTS: In MTT assays of cell survival, lactate dehydrogenase assays of total cell death and terminal deoxynucleotidyl transferase dUTP nick end labeling staining of apoptotic-like cell death, NXY-059 at concentrations ranging from 1 µm to 1 mm was completely without activity. Conversely an antioxidant cocktail comprising 100 µm each of ascorbate, reduced glutathione, and dithiothreitol used as a positive control provided marked neuronal protection in these assays. CONCLUSION: These findings support our hypothesis that stroke drug screening in human neural tissues will be of value and provides an explanation for the failure of NXY-059 as a human stroke drug.


Asunto(s)
Bencenosulfonatos/farmacología , Hipoxia de la Célula/efectos de los fármacos , Glucosa/deficiencia , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Hipoxia de la Célula/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Técnicas de Cocultivo , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/patología , Células Madre Embrionarias/fisiología , Fibroblastos/fisiología , Humanos , Peróxido de Hidrógeno/toxicidad , L-Lactato Deshidrogenasa/metabolismo , Neuronas/patología , Neuronas/fisiología , Nitroprusiato/toxicidad , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Método Simple Ciego , Insuficiencia del Tratamiento
2.
PLoS Biol ; 11(12): e1001738, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24358022

RESUMEN

Spinal cord injury (SCI) is a devastating condition that causes substantial morbidity and mortality and for which no treatments are available. Stem cells offer some promise in the restoration of neurological function. We used systematic review, meta-analysis, and meta-regression to study the impact of stem cell biology and experimental design on motor and sensory outcomes following stem cell treatments in animal models of SCI. One hundred and fifty-six publications using 45 different stem cell preparations met our prespecified inclusion criteria. Only one publication used autologous stem cells. Overall, allogeneic stem cell treatment appears to improve both motor (effect size, 27.2%; 95% Confidence Interval [CI], 25.0%-29.4%; 312 comparisons in 5,628 animals) and sensory (effect size, 26.3%; 95% CI, 7.9%-44.7%; 23 comparisons in 473 animals) outcome. For sensory outcome, most heterogeneity between experiments was accounted for by facets of stem cell biology. Differentiation before implantation and intravenous route of delivery favoured better outcome. Stem cell implantation did not appear to improve sensory outcome in female animals and appeared to be enhanced by isoflurane anaesthesia. Biological plausibility was supported by the presence of a dose-response relationship. For motor outcome, facets of stem cell biology had little detectable effect. Instead most heterogeneity could be explained by the experimental modelling and the outcome measure used. The location of injury, method of injury induction, and presence of immunosuppression all had an impact. Reporting of measures to reduce bias was higher than has been seen in other neuroscience domains but were still suboptimal. Motor outcomes studies that did not report the blinded assessment of outcome gave inflated estimates of efficacy. Extensive recent preclinical literature suggests that stem-cell-based therapies may offer promise, however the impact of compromised internal validity and publication bias mean that efficacy is likely to be somewhat lower than reported here.


Asunto(s)
Traumatismos de la Médula Espinal/cirugía , Trasplante de Células Madre , Animales , Modelos Animales de Enfermedad , Resultado del Tratamiento
3.
Brain Res Bull ; 156: 25-32, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31837459

RESUMEN

BACKGROUND: Neuroprotection for stroke has shown great promise but has had little translational success. Developing drugs for humans logically requires human tissue evaluation. Human embryonic stem cell (hESC)-derived neuronal cultures at different developmental stages were subject to oxygen glucose deprivation (OGD) to determine how developing maturity altered response to ischemic injury. METHODS: H9 hESCs were induced by Noggin to generate neural progenitors (NPs) and highly arbourised structurally complex neurons. They were both subjected to OGD or OGD with reoxygenation (OGD-R) for 1-6 h.Outcome was assessed by measures of cell death, survival and morphology. RESULTS: NPs did not die after OGD but experienced progressive loss of metabolic activity. Highly arbourised neurons showed minimal cell death initially but 44 % and 78 % died after 4 and 6 h OGD. Metabolic dysfunction was greater in these more mature neurons (∼70 %) than in NPs and evident after 1 h OGD, before detection of neuronal death at 4 h. OGD-R salvaged metabolic activity but not cell death in mature neurons. In NPs there was little metabolic salvage and cell death was induced (50 % and 65 % at 4 and 6 h OGD-R, respectively). CONCLUSIONS: Highly arbourised neurons are more sensitive to ischaemic injury than NPs which did however develop marked vulnerability to prolonged injury with reoxygenation. These observations imply that therapeutic potential may be highly dependent of the developmental state of the neurons we aim to protect.


Asunto(s)
Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Daño por Reperfusión/terapia , Apoptosis/fisiología , Muerte Celular/fisiología , Hipoxia de la Célula/fisiología , Supervivencia Celular/fisiología , Células Cultivadas , Glucosa/metabolismo , Humanos , Neurogénesis/fisiología , Neuroprotección/fisiología , Oxígeno/metabolismo , Daño por Reperfusión/metabolismo , Transducción de Señal
4.
Neurology ; 93(1): e40-e51, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31175207

RESUMEN

OBJECTIVE: To determine whether and to what degree bias and underestimated variability undermine the predictive value of preclinical research for clinical translation. METHODS: We investigated experimental spinal cord injury (SCI) studies for outcome heterogeneity and the impact of bias. Data from 549 preclinical SCI studies including 9,535 animals were analyzed with meta-regression to assess the effect of various study characteristics and the quality of neurologic recovery. RESULTS: Overall, the included interventions reported a neurobehavioral outcome improvement of 26.3% (95% confidence interval 24.3-28.4). Response to treatment was dependent on experimental modeling paradigms (neurobehavioral score, site of injury, and animal species). Applying multiple outcome measures was consistently associated with smaller effect sizes compared with studies applying only 1 outcome measure. More than half of the studies (51.2%) did not report blinded assessment, constituting a likely source of evaluation bias, with an overstated effect size of 7.2%. Assessment of publication bias, which extrapolates to identify likely missing data, suggested that between 2% and 41% of experiments remain unpublished. Inclusion of these theoretical missing studies suggested an overestimation of efficacy, reducing the effect sizes by between 0.9% and 14.3%. CONCLUSIONS: We provide empirical evidence of prevalent bias in the design and reporting of experimental SCI studies, resulting in overestimation of the effectiveness. Bias compromises the internal validity and jeopardizes the successful translation of SCI therapies from the bench to bedside.


Asunto(s)
Modelos Animales de Enfermedad , Traumatismos de la Médula Espinal/terapia , Animales , Sesgo de Publicación , Recuperación de la Función , Investigación Biomédica Traslacional
5.
Transl Stroke Res ; 9(6): 564-574, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29572690

RESUMEN

Low translational yield for stroke may reflect the focus of discovery science on rodents rather than humans. Just how little is known about human neuronal ischaemic responses is confirmed by systematic review and meta-analysis revealing that data for the most commonly used SH-SY5Y human cells comprises only 84 papers. Oxygen-glucose deprivation, H2O2, hypoxia, glucose-deprivation and glutamate excitotoxicity yielded - 58, - 61, - 29, - 45 and - 49% injury, respectively, with a dose-response relationship found only for H2O2 injury (R2 = 29.29%, p < 0.002). Heterogeneity (I2 = 99.36%, df = 132, p < 0.0001) was largely attributable to the methods used to detect injury (R2 = 44.77%, p < 0.000) with cell death assays detecting greater injury than survival assays (- 71 vs - 47%, R2 = 28.64%, p < 0.000). Seventy-four percent of publications provided no description of differentiation status, but in the 26% that did, undifferentiated cells were susceptible to greater injury (R2 = 4.13%, p < 0.047). One hundred and sixty-nine interventions improved average survival by 34.67% (p < 0.0001). Eighty-eight comparisons using oxygen-glucose deprivation found both benefit and harm, but studies using glutamate and H2O2 injury reported only improvement. In studies using glucose deprivation, intervention generally worsened outcome. There was insufficient data to rank individual interventions, but of the studies reporting greatest improvement (> 90% effect size), 7/13 were of herbal medicine constituents (24.85% of the intervention dataset). We conclude that surprisingly little is known of the human neuronal response to ischaemic injury, and that the large impact of methodology on outcome indicates that further model validation is required. Lack of evidence for randomisation, blinding or power analysis suggests that the intervention data is at substantial risk of bias.


Asunto(s)
Isquemia/patología , Isquemia/fisiopatología , Bases de Datos Bibliográficas/estadística & datos numéricos , Humanos , Neuroblastoma/patología
6.
J Neurosci Methods ; 308: 286-293, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30003885

RESUMEN

BACKGROUND: Differentiation of human embryonic stem cells (hESCs) into distinct neural lineages has been widely studied. However, preparation of mixed yet neurochemically mature populations, for the study of neurological diseases involving mixed cell types has received less attention. NEW METHOD: We combined two commonly used differentiation methods to provide robust and reproducible cultures in which a mixture of primarily GABAergic and Glutamatergic neurons was obtained. Detailed characterisation by immunocytochemistry (ICC) and quantitative real-time PCR (qPCR) assessed the neurochemical phenotype, and the maturation state of these neurons. RESULTS: We found that once neurospheres (NSs) had attached to the culture plates, proliferation of neural stem cell was suppressed. Neuronal differentiation and synaptic development then occurred after 21 days in vitro (DIV). By 49DIV, there were large numbers of neurochemically and structurally mature neurons. The qPCR studies indicated that expression of GABAergic genes increased the most (93.3-fold increase), followed by glutamatergic (51-fold increase), along with smaller changes in expression of cholinergic (3-fold increase) and dopaminergic genes (6-fold increase), as well as a small change in glial cell marker expression (5-fold increase). COMPARISON WITH EXISTING METHOD (S): Existing methods isolate hESC-derived neural progenitors for onward differentiation to mature neurons using either migration or dissociative paradigms. These give poor survival or yield. By combining these approaches, we obtain high yields of morphologically and neurochemically mature neurons. These can be maintained in culture for extended periods. CONCLUSION: Our method provides a novel, effective and robust neural culture system with structurally and neurochemically mature cell populations and neural networks, suitable for studying a range of neurological diseases from a human perspective.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Células Madre Embrionarias/fisiología , Células-Madre Neurales/fisiología , Neuronas/fisiología , Línea Celular , Neuronas GABAérgicas/fisiología , Ácido Glutámico/fisiología , Humanos
7.
Stem Cells Int ; 2017: 7848932, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28690640

RESUMEN

Mutations in WD40-repeat protein 62 (WDR62) are commonly associated with primary microcephaly and other developmental cortical malformations. We used human pluripotent stem cells (hPSC) to examine WDR62 function during human neural differentiation and model early stages of human corticogenesis. Neurospheres lacking WDR62 expression showed decreased expression of intermediate progenitor marker, TBR2, and also glial marker, S100ß. In contrast, inhibition of c-Jun N-terminal kinase (JNK) signalling during hPSC neural differentiation induced upregulation of WDR62 with a corresponding increase in neural and glial progenitor markers, PAX6 and EAAT1, respectively. These findings may signify a role of WDR62 in specifying intermediate neural and glial progenitors during human pluripotent stem cell differentiation.

8.
Int J Stroke ; 9(5): 544-52, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24393199

RESUMEN

BACKGROUND AND AIMS: Hypothermia provides neuroprotection after cardiac arrest, hypoxic-ischemic encephalopathy, and in animal models of ischemic stroke. However, as drug development for stroke has been beset by translational failure, we sought additional evidence that hypothermia protects human neurons against ischemic injury. METHODS: Human embryonic stem cells were cultured and differentiated to provide a source of neurons expressing ß III tubulin, microtubule-associated protein 2, and the Neuronal Nuclei antigen. Oxygen deprivation, oxygen-glucose deprivation, and H2 O2 -induced oxidative stress were used to induce relevant injury. RESULTS: Hypothermia to 33°C protected these human neurons against H2 O2 -induced oxidative stress reducing lactate dehydrogenase release and Terminal deoxynucleotidyl transferase dUTP nick end labeling-staining by 53% (P ≤ 0·0001; 95% confidence interval 34·8-71·04) and 42% (P ≤ 0·0001; 95% confidence interval 27·5-56·6), respectively, after 24 h in culture. Hypothermia provided similar protection against oxygen-glucose deprivation (42%, P ≤ 0·001, 95% confidence interval 18·3-71·3 and 26%, P ≤ 0·001; 95% confidence interval 12·4-52·2, respectively) but provided no protection against oxygen deprivation alone. Protection (21%) persisted against H2 O2 -induced oxidative stress even when hypothermia was initiated six-hours after onset of injury (P ≤ 0·05; 95% confidence interval 0·57-43·1). CONCLUSION: We conclude that hypothermia protects stem cell-derived human neurons against insults relevant to stroke over a clinically relevant time frame. Protection against H2 O2 -induced injury and combined oxygen and glucose deprivation but not against oxygen deprivation alone suggests an interaction in which protection benefits from reduction in available glucose under some but not all circumstances.


Asunto(s)
Muerte Celular/fisiología , Hipotermia Inducida , Neuronas/fisiología , Apoptosis/fisiología , Hipoxia de la Célula , Células Cultivadas , Células Madre Embrionarias , Glucosa/deficiencia , Humanos , Peróxido de Hidrógeno/toxicidad , Hipotermia/fisiopatología , Lactato Deshidrogenasas/metabolismo , Estrés Oxidativo/fisiología , Oxígeno/metabolismo , Factores de Tiempo
9.
PLoS One ; 8(8): e71317, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23951131

RESUMEN

BACKGROUND: Therapeutic hypothermia is a clinically useful neuroprotective therapy for cardiac arrest and neonatal hypoxic ischemic encephalopathy and may potentially be useful for the treatment of other neurological conditions including traumatic spinal cord injury (SCI). The pre-clinical studies evaluating the effectiveness of hypothermia in acute SCI broadly utilise either systemic hypothermia or cooling regional to the site of injury. The literature has not been uniformly positive with conflicting studies of varying quality, some performed decades previously. METHODS: In this study, we systematically review and meta-analyse the literature to determine the efficacy of systemic and regional hypothermia in traumatic SCI, the experimental conditions influencing this efficacy, and the influence of study quality on outcome. Three databases were utilised; PubMed, ISI Web of Science and Embase. Our inclusion criteria consisted of the (i) reporting of efficacy of hypothermia on functional outcome (ii) number of animals and (iii) mean outcome and variance in each group. RESULTS: Systemic hypothermia improved behavioural outcomes by 24.5% (95% CI 10.2 to 38.8) and a similar magnitude of improvement was seen across a number of high quality studies. The overall behavioural improvement with regional hypothermia was 26.2%, but the variance was wide (95% CI -3.77 to 56.2). This result may reflect a preponderance of positive low quality data, although a preferential effect of hypothermia in ischaemic models of injury may explain some of the disparate data. Sufficient heterogeneity was present between studies of regional hypothermia to reveal a number of factors potentially influencing efficacy, including depth and duration of hypothermia, animal species, and neurobehavioural assessment. However, these factors could reflect the influence of earlier lower quality literature. CONCLUSION: Systemic hypothermia appears to be a promising potential method of treating acute SCI on the basis of meta-analysis of the pre-clinical literature and the results of high quality animal studies.


Asunto(s)
Hipotermia Inducida/veterinaria , Sesgo de Publicación , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/veterinaria , Animales , Conducta Animal , Bases de Datos Bibliográficas , Femenino , Hipotermia Inducida/métodos , Modelos Animales , Recuperación de la Función , Traumatismos de la Médula Espinal/patología , Resultado del Tratamiento
10.
Int J Stroke ; 7(7): 582-8, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22687044

RESUMEN

Stem cell therapy holds great promise in medicine, but clinical development should be based on a sound understanding of potential weaknesses in supporting experimental data. The aim of this article was to provide a systematic overview of evidence relating to the efficacy of stem cell-based therapies in animal models of stroke to foster the clinical application of stem cell-based therapies and to inform the design of large-scale clinical trials. We conducted a systematic search for reports of experiments using stem cells in animal models of cerebral ischaemia, and performed DerSimmonian and Laird random effects meta-analysis. We assessed the impact of study characteristics, of publication bias and of measures to reduce bias. We identified 6059 publications, 117 met our prespecified inclusion criteria. One hundred eighty-seven experiments using 2332 animals described changes in structural outcome and 192 experiments using 2704 animals described changes in functional outcome. Median study quality score was 4 (interquartile range 3 to 6) and less than half of studies reported randomization or blinded outcome assessment; only three studies reported a sample size calculation. Nonrandomized studies gave significantly higher estimates of improvement in structural outcome, and there was evidence of a significant publication bias. For structural outcome autologous (i.e. self-derived) stem cells were more effective than allogeneic (donor-derived) cells, but for functional outcome, the reverse was true. A significant dose-response relationship was observed only for structural outcome. For structural outcome, there was an absolute reduction in efficacy of 1·5% (-2·4 to -0·6) for each days delay to treatment; functional outcome was independent of the time of administration. While stem cells appear to be of some benefit in animal models of stroke the internal and external validity of this literature is potentially confounded by poor study quality and by publication bias. The clinical development of stem cell-based therapies, in stroke and elsewhere, should acknowledge these potential weaknesses in the supporting animal data.


Asunto(s)
Modelos Animales de Enfermedad , Trasplante de Células Madre/métodos , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/cirugía , Animales , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Humanos , Trasplante de Células Madre/tendencias
11.
J RNAi Gene Silencing ; 5(1): 321-30, 2009 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-19771229

RESUMEN

Ribonucleotide reductase (RR) has an essential role in DNA synthesis and repair and is a therapeutic target in a number of different cancers. Previous studies have shown that RNAi-mediated knockdown of either the RRM1 or RRM2 subunit sensitizes cells to the cytotoxic effects of the nucleoside analogs and more recently it has been shown that RRM2 knockdown itself has a growth inhibitory effect. Here we compare the effects of siRNA-mediated knockdown of both RRM1 and RRM2 subunits of RR in A549 and HCT-116 cells using an optimized transfection protocol. Growth of A549 cells was strongly inhibited by efficient siRNA-mediated silencing of either RRM1 or RRM2, and knockdown of each subunit led to long-term growth inhibition and cell-cycle arrest. Knockdown with sub growth inhibitory siRNA concentrations sensitized A549 and HCT-116 cells to gemcitabine when RRM1 was targeted, whereas RRM2 knockdown led to hydroxyurea sensitization. These results suggest that the inhibition of cell growth, rather than drug sensitization, is the major effect of RRM1 and RRM2 knockdown. In an A549 xenograft model, cells transfected with RRM1-specific siRNA failed to form tumors in 6 out of 8 CD1 nude mice, whereas those transfected with RRM2-specific siRNA grew but at a reduced rate. Taken together, these data demonstrate that siRNA-mediated knockdown of the RRM1 subunit is more effective than knockdown of RRM2 in inhibiting the growth of cancer cell lines and suggest that RRM1 is a potential target for nucleic acid-based cancer therapies, either alone or in combination with gemcitabine.

13.
Exp Cell Res ; 312(16): 3060-74, 2006 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-16860792

RESUMEN

Neurogenesis and neuronal migration are the prerequisites for the development of the central nervous system. We have identified a novel rodent gene encoding for a neural regeneration protein (NRP) with an activity spectrum similar to the chemokine stromal-derived factor (SDF)-1, but with much greater potency. The Nrp gene is encoded as a forward frameshift to the hypothetical alkylated DNA repair protein AlkB. The predicted protein sequence of NRP contains domains with homology to survival-promoting peptide (SPP) and the trefoil protein TFF-1. The Nrp gene is first expressed in neural stem cells and expression continues in glial lineages. Recombinant NRP and NRP-derived peptides possess biological activities including induction of neural migration and proliferation, promotion of neuronal survival, enhancement of neurite outgrowth and promotion of neuronal differentiation from neural stem cells. NRP exerts its effect on neuronal survival by phosphorylation of the ERK1/2 and Akt kinases, whereas NRP stimulation of neural migration depends solely on p44/42 MAP kinase activity. Taken together, the expression profile of Nrp, the existence in its predicted protein structure of domains with similarities to known neuroprotective and migration-inducing factors and the high potency of NRP-derived synthetic peptides acting in femtomolar concentrations suggest it to be a novel gene of relevance in cellular and developmental neurobiology.


Asunto(s)
Axones/metabolismo , Factores Quimiotácticos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Movimiento Celular/fisiología , Proliferación Celular , Supervivencia Celular/fisiología , Sistema de Lectura Ribosómico/genética , Regulación de la Expresión Génica , Humanos , Ratones , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Neuroglía/citología , Estructura Terciaria de Proteína , Proteínas/química , Proteínas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Homología de Secuencia de Aminoácido , Células Madre/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA