Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 61(49): 19780-19789, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36448215

RESUMEN

Transition metals with 3d unoccupied orbitals have superior catalytic activity, but inherent high spin suppresses their adsorption capability, leading to sluggish polysulfide conversion kinetics for Li-S batteries. Herein, we provide Fe-O-Si bridge bonds to manipulate eg filling and induce a high-to-medium spin transition of Fe3+ sites, which enhances polysulfide adsorption and facilitates sulfur redox reaction kinetics. The resultant cathodes exhibit outstanding performances under high sulfur loading, which can deliver a high battery specific energy of 1061 mA h·g-1 even after 100 cycles in Li-S pouch batteries. This work provides new insights into the kinetic and multi-step conversion mechanism of the sulfur redox reaction process, helping in the understanding and design of spin-dependent catalysts.


Asunto(s)
Litio , Azufre , Iones , Oxidación-Reducción , Electrodos
2.
Chem Commun (Camb) ; 60(38): 5038-5041, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38630532

RESUMEN

The slow Li+ transport rate in the thick sulfur cathode of the Li-S battery affects its capacity and cycling performance. Herein, Fe-doped highly ordered mesoporous silica material (Fe-HSBA-15) as a sulfur carrier of the Li-S battery shows high ion conductivity (1.10 mS cm-1) and Li+ transference number (0.77). The Fe-HSBA-15/S cell has an initial capacity of up to 1216.7 mA h g-1 at 0.2C and good stability. Impressively, at a high sulfur load of 4.34 mg cm-2, the Fe-HSBA-15/S cell still maintains an area specific capacity of 4.47 mA h cm-2 after 100 cycles. This is because Fe-HSBA-15 improves the Li+ diffusion behavior through the ordered mesoporous structure. Theoretical calculations also confirmed that the doping of iron enhances the adsorption of polysulfides, reduces the band gap and makes the catalytic activity stronger.

3.
Chem Commun (Camb) ; 58(86): 12058-12061, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36196676

RESUMEN

Carbon-doped SiO2 is synthesized by the in situ carbonization of halloysite. Carbon atoms partially substitute O atoms to form Si-C bonds and manipulate the localized electronic states of Si atoms, thereby endowing SiO2 with suitable adsorption strength and reducing the activation energy barrier for polysulfides in the sulfur redox. The C-SiO2/S cathodes for Li-S batteries exhibited superior electrochemical performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA