Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Reconstr Microsurg ; 39(3): 231-237, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35952677

RESUMEN

BACKGROUND: Commercially available near infrared spectroscopy devices for continuous free flap tissue oxygenation (StO2) monitoring can only be used on flaps with a cutaneous component. Additionally, differences in skin quality and pigmentation may alter StO2 measurements. Here, we present a novel implantable heat convection probe that measures microvascular blood flow for peripheral monitoring of free flaps, and is not subject to the same issues that limit the clinical utility of near-infrared spectroscopy. METHODS: The intratissue microvascular flow-sensing device includes a resistive heater, 4 thermistors, a small battery, and a Bluetooth chip, which allows connection to a smart device. Convection of applied heat is measured and mathematically transformed into a measurement of blood flow velocity. This was tested alongside Vioptix T.Ox in a porcine rectus abdominis myocutaneous flap model of arterial and venous occlusion. After flap elevation, the thermal device was deployed intramuscularly, and the cutaneous T.Ox device was applied. Acland clamps were alternately applied to the flap artery and veins to achieve 15 minutes periods of flap ischemia and congestion with a 15 minutes intervening recovery period. In total, five devices were tested in three flaps in three separate pigs over 16 vaso-occlusive events. RESULTS: Flow measurements were responsive to both ischemia and congestion, and returned to baseline during recovery periods. Flow measurements corresponded closely with measured StO2. Cross-correlation at zero lag showed agreement between these two sensing modalities. Two novel devices tested simultaneously on the same flap showed only minor variations in flow measurements. CONCLUSION: This novel probe is capable of detecting changes in tissue microcirculatory blood flow. This device performed well in a swine model of flap ischemia and congestion, and shows promise as a potentially useful clinical tool. Future studies will investigate performance in fasciocutaneous flaps and characterize longevity of the device over a period of several days.


Asunto(s)
Colgajos Tisulares Libres , Colgajo Miocutáneo , Porcinos , Animales , Microcirculación , Colgajos Tisulares Libres/irrigación sanguínea , Isquemia , Complicaciones Posoperatorias , Arterias
2.
J Reconstr Microsurg ; 38(4): 321-327, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34553344

RESUMEN

BACKGROUND: Current near-infrared spectroscopy (NIRS)-based systems for continuous flap monitoring are limited to flaps which carry a cutaneous paddle. As such, this useful and reliable technology has not previously been applicable to muscle-only free flaps where other modalities with substantial limitations continue to be utilized. METHODS: We present the first NIRS probe which allows continuous monitoring of local tissue oxygen saturation (StO2) directly within the substance of muscle tissue. This probe is flexible, subcentimeter in scale, waterproof, biocompatible, and is fitted with resorbable barbs which facilitate temporary autostabilization followed by easy atraumatic removal. This novel device was compared with a ViOptix T.Ox monitor in a porcine rectus abdominus myocutaneous flap model of arterial and venous occlusions. During these experiments, the T.Ox device was affixed to the skin paddle, while the novel probe was within the muscle component of the same flap. RESULTS: The intramuscular NIRS device and skin-mounted ViOptix T.Ox devices produced very similar StO2 tracings throughout the vascular clamping events, with obvious and parallel changes occurring upon vascular clamping and release. The normalized cross-correlation at zero lag describing correspondence between the novel intramuscular NIRS and T.Ox devices was >0.99. CONCLUSION: This novel intramuscular NIRS probe offers continuous monitoring of oxygen saturation within muscle flaps. This experiment demonstrates the potential suitability of this intramuscular NIRS probe for the task of muscle-only free flap monitoring, where NIRS has not previously been applicable. Testing in the clinical environment is necessary to assess durability and reliability.


Asunto(s)
Colgajo Miocutáneo , Procedimientos de Cirugía Plástica , Animales , Músculos , Oxígeno , Reproducibilidad de los Resultados , Espectroscopía Infrarroja Corta/métodos , Porcinos
3.
J Orthop Res ; 41(1): 54-62, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35384025

RESUMEN

Serial examination and direct measurement of intracompartmental pressure (ICP) are suboptimal strategies for the detection of acute compartment syndrome (CS) because they are operator-dependent and yield information that only indirectly reflects intracompartmental muscle perfusion. As a result, instances of unnecessary fasciotomy and unrecognized CS are relatively common. Recently, near-infrared spectroscopy (NIRS)-based systems for compartment monitoring have generated interest as an adjunct tool. Under ideal conditions, NIRS directly measures the oxygenation of intracompartmental muscle (StO2 ), thereby obviating the challenges of interpreting equivocal clinical examination or ICP data. Despite these potential advantages, existing NIRS sensors are plagued by technical difficulties that limit clinical utility. Most of these limitations relate to their transcutaneous design that makes them susceptible to both interference from intervening skin/subcutaneous tissue, underlying hematoma, and instability of the skin-sensor interface. Here, we present a flexible, wireless, Bluetooth-enabled, percutaneously introducible intramuscular NIRS device that directly and continuously measures the StO2 of intracompartmental muscle. Proof of concept for this device is demonstrated in a swine lower extremity balloon compression model of acute CS, wherein we simultaneously track muscle oxygenation, ICP, and compartment perfusion pressure (PP). The observed StO2 decreased with increasing ICP and decreasing PP and then recovered following pressure reduction. The mean change in StO2 as the PP was decreased from baseline to 30 mmHg was -7.6%. The mean difference between baseline and nadir StO2 was -17.4%. Cross-correlations (absolute value) describing the correspondence between StO2 and ICP were >0.73. This novel intramuscular NIRS device identifies decreased muscle perfusion in the setting of evolving CS.


Asunto(s)
Síndromes Compartimentales , Espectroscopía Infrarroja Corta , Porcinos , Animales , Músculos , Síndromes Compartimentales/diagnóstico
4.
Appl Phys Rev ; 9(4): 041307, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36467868

RESUMEN

Measurements of the thermal properties of the skin can serve as the basis for a noninvasive, quantitative characterization of dermatological health and physiological status. Applications range from the detection of subtle spatiotemporal changes in skin temperature associated with thermoregulatory processes, to the evaluation of depth-dependent compositional properties and hydration levels, to the assessment of various features of microvascular/macrovascular blood flow. Examples of recent advances for performing such measurements include thin, skin-interfaced systems that enable continuous, real-time monitoring of the intrinsic thermal properties of the skin beyond its superficial layers, with a path to reliable, inexpensive instruments that offer potential for widespread use as diagnostic tools in clinical settings or in the home. This paper reviews the foundational aspects of the latest thermal sensing techniques with applicability to the skin, summarizes the various devices that exploit these concepts, and provides an overview of specific areas of application in the context of skin health. A concluding section presents an outlook on the challenges and prospects for research in this field.

5.
Biosens Bioelectron ; 206: 114145, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35278852

RESUMEN

Vascular pedicle thrombosis after free flap transfer or solid organ transplantation surgeries can lead to flap necrosis, organ loss requiring re-transplantation, or even death. Although implantable flow sensors can provide early warning of malperfusion and facilitate operative salvage, measurements performed with existing technologies often depend on extrinsic conditions such as mounting methods and environmental fluctuations. Furthermore, the mechanisms for fixing such probes to vascular or skeletal structures may disrupt the normal blood flow or cause unnecessary tissue damage. Requirements for wired connections to benchtop readout systems also increase costs, complicate clinical care and constrain movements of the patient. Here, we report a wireless, miniaturized flow sensing system that exploits sub-millimeter scale, multi-nodal thermal probes, with biodegradable barbs that secure the probes to the surrounding tissues in a manner that facilitates removal after a period of use. These smartphone-readable devices, together with experimentally validated analytical models of the thermal transport physics, enable reliable, accurate flow sensing in ways that are largely immune to variations in temperature and mechanical perturbations. In vivo demonstrations of this technology in porcine myocutaneous flap and kidney malperfusion models highlight the essential capabilities in microsurgical and transplantation-related biomedical application scenarios.


Asunto(s)
Técnicas Biosensibles , Trasplantes , Animales , Humanos , Microcirculación , Prótesis e Implantes , Porcinos
6.
NPJ Digit Med ; 5(1): 147, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36123384

RESUMEN

Swallowing is a complex neuromuscular activity regulated by the autonomic nervous system. Millions of adults suffer from dysphagia (impaired or difficulty swallowing), including patients with neurological disorders, head and neck cancer, gastrointestinal diseases, and respiratory disorders. Therapeutic treatments for dysphagia include interventions by speech-language pathologists designed to improve the physiology of the swallowing mechanism by training patients to initiate swallows with sufficient frequency and during the expiratory phase of the breathing cycle. These therapeutic treatments require bulky, expensive equipment to synchronously record swallows and respirations, confined to use in clinical settings. This paper introduces a wireless, wearable technology that enables continuous, mechanoacoustic tracking of respiratory activities and swallows through movements and vibratory processes monitored at the skin surface. Validation studies in healthy adults (n = 67) and patients with dysphagia (n = 4) establish measurement equivalency to existing clinical standard equipment. Additional studies using a differential mode of operation reveal similar performance even during routine daily activities and vigorous exercise. A graphical user interface with real-time data analytics and a separate, optional wireless module support both visual and haptic forms of feedback to facilitate the treatment of patients with dysphagia.

7.
Nat Commun ; 13(1): 3009, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35637230

RESUMEN

Continuous, real-time monitoring of perfusion after microsurgical free tissue transfer or solid organ allotransplantation procedures can facilitate early diagnosis of and intervention for anastomotic thrombosis. Current technologies including Doppler systems, cutaneous O2-sensing probes, and fluorine magnetic resonance imaging methods are limited by their intermittent measurements, requirements for skilled personnel, indirect interfaces, and/or their tethered connections. This paper reports a wireless, miniaturized, minimally invasive near-infrared spectroscopic system designed for uninterrupted monitoring of local-tissue oxygenation. A bioresorbable barbed structure anchors the probe stably at implantation sites for a time period matched to the clinical need, with the ability for facile removal afterward. The probe connects to a skin-interfaced electronic module for wireless access to essential physiological parameters, including local tissue oxygenation, pulse oxygenation, and heart rate. In vitro tests and in vivo studies in porcine flap and kidney models demonstrate the ability of the system to continuously measure oxygenation with high accuracy and sensitivity.


Asunto(s)
Saturación de Oxígeno , Trasplantes , Animales , Prótesis e Implantes , Piel/diagnóstico por imagen , Espectroscopía Infrarroja Corta/métodos , Porcinos
8.
NPJ Digit Med ; 3: 29, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32195364

RESUMEN

Hydrocephalus is a common disorder caused by the buildup of cerebrospinal fluid (CSF) in the brain. Treatment typically involves the surgical implantation of a pressure-regulated silicone tube assembly, known as a shunt. Unfortunately, shunts have extremely high failure rates and diagnosing shunt malfunction is challenging due to a combination of vague symptoms and a lack of a convenient means to monitor flow. Here, we introduce a wireless, wearable device that enables precise measurements of CSF flow, continuously or intermittently, in hospitals, laboratories or even in home settings. The technology exploits measurements of thermal transport through near-surface layers of skin to assess flow, with a soft, flexible, and skin-conformal device that can be constructed using commercially available components. Systematic benchtop studies and numerical simulations highlight all of the key considerations. Measurements on 7 patients establish high levels of functionality, with data that reveal time dependent changes in flow associated with positional and inertial effects on the body. Taken together, the results suggest a significant advance in monitoring capabilities for patients with shunted hydrocephalus, with potential for practical use across a range of settings and circumstances, and additional utility for research purposes in studies of CSF hydrodynamics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA