Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 9762, 2024 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684676

RESUMEN

The American cockroach, Periplaneta americana (Linnaeus, 1758) (Blattodea: Blattidae), is one of the most common pests that thrive in diverse environments and carries various pathogens, causing critical threats to public health and the ecosystem. We thus report in this study the first observation of decapitated American cockroaches as a result of infestation with scuttle fly parasitoids. Interestingly, behavioral alterations in the form of zombification-like behavior could be observed in cockroaches reared in the laboratory before being decapitated, implying that the insect targets cockroach heads. To identify this parasitoid, cockroaches' corpora were isolated in jars, and apodous larvae were observed. Larvae developed into small coarctate pupae, and adults emerged. The scuttle flies were collected and exhibited tiny black, brown, to yellowish bodies. The fly was initially identified based on its morphological properties as a member of the order Diptera, family Phoridae. To provide further insights into the morphological attributes of the phorid species, the fly was examined using a scanning electron microscope (SEM) and then identified as Megaselia scalaris accordingly. SEM analysis revealed the distinctive structure of M. scalaris concerning the head, mouth parts, and legs. Specifically, the mouth parts include the labrum, labellum, rostrum, and maxillary palps. Although further investigations are still required to understand the complicated relationships between M. scalaris and American cockroaches, our findings provide a prominent step in the control of American cockroaches using M. scalaris as an efficient biological control agent.


Asunto(s)
Dípteros , Periplaneta , Animales , Periplaneta/parasitología , Dípteros/fisiología , Control Biológico de Vectores/métodos , Larva/fisiología , Pupa
2.
Antioxidants (Basel) ; 13(9)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39334698

RESUMEN

The abundance of metal pollutants in freshwater habitats poses serious threats to the survival and biodiversity of aquatic organisms and human beings. This study intends for the first time to assess the pernicious influences of heavy metals in Al Marioteya canal freshwater in Egypt, compared to Al Mansoureya canal as a reference site utilizing the creeping water bug (Ilyocoris cimicoides) as an ecotoxicological model. The elemental analysis of the water showed a significantly higher incidence of heavy metals, including cadmium (Cd), cobalt (Co), chromium (Cr), nickel (Ni), and lead (Pb), in addition to the calcium (Ca) element than the World Health Organization's (WHO) permitted levels. The Ca element was measured in the water samples to determine whether exposure to heavy metals-induced oxidative stress engendered Ca deregulation in the midgut tissues of the creeping water bug. Remarkably, increased levels of these heavy metals were linked to an increase in chemical oxygen demand (COD) at the polluted site. Notably, the accumulation of these heavy metals in the midgut tissues resulted in a substantial reduction in antioxidant parameters, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and ascorbate peroxidase (APOX), along with a marked rise in malondialdehyde (MDA), cytochrome P450, and protein carbonyl levels. These results clearly indicate a noticeable disturbance in the antioxidant defense system due to uncontrollable reactive oxygen species (ROS). Notably, the results demonstrated that oxidative stress caused disturbances in Ca levels in the midgut tissue of I. cimicoides from polluted sites. Furthermore, the comet and flow cytometry analyses showed considerable proliferations of comet cells and apoptotic cells in midgut tissues, respectively, exhibiting prominent correlations, with pathophysiological deregulation. Interestingly, histopathological and ultrastructural examinations exposed noticeable anomalies in the midgut, Malpighian tubules, and ovarioles of I. cimicoides, emphasizing our findings. Overall, our findings emphasize the potential use of I. cimicoides as a bioindicator of heavy metal pollution in freshwater to improve sustainable water management in Egypt.

3.
Micron ; 172: 103502, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37422968

RESUMEN

The migratory locust, Locusta migratoria (Linnaeus, 1758), is one of the most destructive agricultural pests globally, and this species is particularly localized in several regions of Egypt. However, so far, very little attention has been paid to the characteristics of the testes. Furthermore, spermatogenesis requires careful analysis to characterize and track developmental episodes. We thus investigated, for the first time, the histological and ultrastructural properties of the testis in L. migratoria employing a light microscope, a scanning electron microscope (SEM), and a transmission electron microscope (TEM). Our results revealed that the testis comprises several follicles, emerging with distinct outer surface wrinkle patterns for each follicle throughout the length of the follicular wall. Furthermore, histological examination of the follicles showed that each has three developmental zones. Each zone has cysts with characteristic spermatogenic elements, beginning with the spermatogonia at the distal end of each follicle and ending with the spermatozoa at the proximal end. Moreover, spermatozoa are arranged in spermatozoa bundles called spermatodesms. Overall, this research provides novel insights into the structure of the testes of L. migratoria, which will significantly contribute to formulating effective pesticides against locusts.


Asunto(s)
Locusta migratoria , Ortópteros , Masculino , Animales , Testículo/ultraestructura , Espermatogénesis , Espermatozoides
4.
Antioxidants (Basel) ; 12(3)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36978901

RESUMEN

In this study, we shed light for the first time on the usage of migratory locusts (Locusta migratoria) as an insect model to investigate the nanotoxicological influence of aluminum oxide (Al2O3) nanoparticles at low doses on testes, and evaluate the capacity of a whole-body extract of American cockroaches (Periplaneta americana) (PAE) to attenuate Al2O3 NPs-induced toxicity. Energy dispersive X-ray microanalyzer (EDX) analysis verified the bioaccumulation of Al in testicular tissues due to its liberation from Al2O3 NPs, implying their penetration into the blood-testis barrier. Remarkably, toxicity with Al engendered disorders of antioxidant and stress biomarkers associated with substantial DNA damage and cell apoptosis. Furthermore, histopathological and ultrastructural analyses manifested significant aberrations in the testicular tissues from the group exposed to Al2O3 NPs, indicating the overproduction of reactive oxygen species (ROS). Molecular docking analysis emphasized the antioxidant capacity of some compounds derived from PAE. Thus, pretreatment with PAE counteracted the detrimental effects of Al in the testes, revealing antioxidant properties and thwarting DNA impairment and cell apoptosis. Moreover, histological and ultrastructural examinations revealed no anomalies in the testes. Overall, these findings substantiate the potential applications of PAE in preventing the testicular impairment of L. migratoria and the conceivable utilization of locusts for nanotoxicology studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA