RESUMEN
Phylogeography bears an important part in ecology and evolution. However, current phylogeographic studies are largely constrained by limited numbers of individual samples. Using an environmental DNA (eDNA) assay for phylogeographic analyses, this study provides detailed information regarding the history of Siberian stone loach Barbatula toni, a primary freshwater fish across the whole range of Hokkaido, Japan. Based on an eDNA metabarcoding on 293 river water samples, we detected eDNA from B. toni in 189 rivers. A total of 51 samples, representing the entire island, were then selected from the B. toni eDNA-positive sample set for the subsequent analyses. To elucidate the phylogeographic structure of B. toni, newly developed eDNA metabarcoding primers (Barba-cytb-F/R) were applied to these samples, specifically targeting their haplotypic variation in cytochrome b. After a bioinformatic processing to mitigate haplotypic false positives, a total of 50 eDNA haplotypes were identified. Two regionally restricted, genetically distinct lineages of the species were revealed as a result of phylogeographic analyses on the haplotypes and tissue-derived DNA from B. toni. According to a molecular clock analysis, they have been genetically isolated for at least 1.5 million years, suggesting their ancient origin and colonisation of Hokkaido, presumably in the glacial periods. These results demonstrate how freshwater fishes can alter their distributions over evolutionary timescales and how eDNA assay can deepen our understanding of phylogeography.
Asunto(s)
Código de Barras del ADN Taxonómico , ADN Ambiental , Haplotipos , Filogeografía , Ríos , Animales , Haplotipos/genética , Japón , ADN Ambiental/genética , Citocromos b/genética , Agua Dulce , Filogenia , Cipriniformes/genética , Cipriniformes/clasificaciónRESUMEN
OBJECTIVES: To investigate the therapeutic outcomes of neoadjuvant and concurrent androgen-deprivation therapy and intensity-modulated radiation therapy with gold marker implantation for intermediate- and high-risk prostate cancer. METHODS: This was a retrospective study of 325 patients with intermediate- or high-risk prostate cancer according to the National Comprehensive Cancer Network guidelines who underwent androgen-deprivation therapy and intensity-modulated radiation therapy (76 Gy) after gold marker implantation between 2001 and 2010. RESULTS: The 5-year distant metastasis-free survival rate was significantly lower for very high-risk patients than for intermediate- and high-risk patients (82.6% vs 99.4% and 96.5%, respectively; P < 0.01). The 5-year biochemical relapse-free survival rates significantly declined with increasing prostate cancer risk (P < 0.01), and were 95.9%, 87.2%, and 73.1% for the intermediate-risk, high-risk and very high-risk patients, respectively. Acute genitourinary and gastrointestinal toxicity grade ≥3 were not observed in any of the patients. Late grade 3 genitourinary toxicity occurred in 0.3% of patients. CONCLUSION: Combination androgen-deprivation therapy and 76-Gy intensity-modulated radiation therapy with gold marker implantation offers good therapeutic outcomes with few serious complications in patients with intermediate- and high-risk prostate cancer.
Asunto(s)
Antagonistas de Andrógenos/uso terapéutico , Terapia Neoadyuvante , Neoplasias de la Próstata/mortalidad , Neoplasias de la Próstata/terapia , Radioterapia de Intensidad Modulada , Anciano , Anciano de 80 o más Años , Supervivencia sin Enfermedad , Marcadores Fiduciales , Oro , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Análisis Multivariante , Antígeno Prostático Específico , Dosificación Radioterapéutica , Estudios Retrospectivos , Factores de Riesgo , Resultado del TratamientoRESUMEN
Mutation hotspots are commonly observed in genomic sequences and certain human disease loci, but general mechanisms for their formation remain elusive. Here we investigate the distribution of single-nucleotide changes around insertions/deletions (indels) in six independent genome comparisons, including primates, rodents, fruitfly, rice and yeast. In each of these genomic comparisons, nucleotide divergence (D) is substantially elevated surrounding indels and decreases monotonically to near-background levels over several hundred bases. D is significantly correlated with both size and abundance of nearby indels. In comparisons of closely related species, derived nucleotide substitutions surrounding indels occur in significantly greater numbers in the lineage containing the indel than in the one containing the ancestral (non-indel) allele; the same holds within species for single-nucleotide mutations surrounding polymorphic indels. We propose that heterozygosity for an indel is mutagenic to surrounding sequences, and use yeast genome-wide polymorphism data to estimate the increase in mutation rate. The consistency of these patterns within and between species suggests that indel-associated substitution is a general mutational mechanism.
Asunto(s)
Células Eucariotas/metabolismo , Evolución Molecular , Genoma/genética , Mutagénesis Insercional/genética , Mutación Puntual/genética , Eliminación de Secuencia/genética , Animales , Biología Computacional , Drosophila melanogaster/genética , Genómica , Humanos , Macaca mulatta/genética , Ratones , Modelos Genéticos , Oryza/genética , Pan troglodytes/genética , Ratas , Saccharomyces cerevisiae/genética , Alineación de SecuenciaRESUMEN
Given the multitude of challenges Earth is facing, sustainability science is of key importance to our continued existence. Evolution is the fundamental biological process underlying the origin of all biodiversity. This phylogenetic diversity fosters the resilience of ecosystems to environmental change, and provides numerous resources to society, and options for the future. Genetic diversity within species is also key to the ability of populations to evolve and adapt to environmental change. Yet, the value of evolutionary processes and the consequences of their impairment have not generally been considered in sustainability research. We argue that biological evolution is important for sustainability and that the concepts, theory, data, and methodological approaches used in evolutionary biology can, in crucial ways, contribute to achieving the UN Sustainable Development Goals (SDGs). We discuss how evolutionary principles are relevant to understanding, maintaining, and improving Nature Contributions to People (NCP) and how they contribute to the SDGs. We highlight specific applications of evolution, evolutionary theory, and evolutionary biology's diverse toolbox, grouped into four major routes through which evolution and evolutionary insights can impact sustainability. We argue that information on both within-species evolutionary potential and among-species phylogenetic diversity is necessary to predict population, community, and ecosystem responses to global change and to make informed decisions on sustainable production, health, and well-being. We provide examples of how evolutionary insights and the tools developed by evolutionary biology can not only inspire and enhance progress on the trajectory to sustainability, but also highlight some obstacles that hitherto seem to have impeded an efficient uptake of evolutionary insights in sustainability research and actions to sustain SDGs. We call for enhanced collaboration between sustainability science and evolutionary biology to understand how integrating these disciplines can help achieve the sustainable future envisioned by the UN SDGs.
RESUMEN
BACKGROUND: Reconstructing the evolutionary history of a species is challenging. It often depends not only on the past biogeographic and climatic events but also the contemporary and ecological factors, such as current connectivity and habitat heterogeneity. In fact, these factors might interact with each other and shape the current species distribution. However, to what extent the current population genetic structure reflects the past and the contemporary factors is largely unknown. Here we investigated spatio-temporal genetic structures of Nile tilapia (Oreochromis niloticus) populations, across their natural distribution in Africa. While its large biogeographic distribution can cause genetic differentiation at the paleo-biogeographic scales, its restricted dispersal capacity might induce a strong genetic structure at micro-geographic scales. RESULTS: Using nine microsatellite loci and 350 samples from ten natural populations, we found the highest genetic differentiation among the three ichthyofaunal provinces and regions (Ethiopian, Nilotic and Sudano-Sahelian) (R(ST) = 0.38 - 0.69). This result suggests the predominant effect of paleo-geographic events at macro-geographic scale. In addition, intermediate divergences were found between rivers and lakes within the regions, presumably reflecting relatively recent interruptions of gene flow between hydrographic basins (R(ST) = 0.24 - 0.32). The lowest differentiations were observed among connected populations within a basin (R(ST) = 0.015 in the Volta basin). Comparison of temporal sample series revealed subtle changes in the gene pools in a few generations (F = 0 - 0.053). The estimated effective population sizes were 23 - 143 and the estimated migration rate was moderate (m ~ 0.094 - 0.097) in the Volta populations. CONCLUSIONS: This study revealed clear hierarchical patterns of the population genetic structuring of O. niloticus in Africa. The effects of paleo-geographic and climatic events were predominant at macro-geographic scale, and the significant effect of geographic connectivity was detected at micro-geographic scale. The estimated effective population size, the moderate level of dispersal and the rapid temporal change in genetic composition might reflect a potential effect of life history strategy on population dynamics. This hypothesis deserves further investigation. The dynamic pattern revealed at micro-geographic and temporal scales appears important from a genetic resource management as well as from a biodiversity conservation point of view.
Asunto(s)
Cíclidos/genética , África , Migración Animal , Animales , Variación Genética , Genética de Población , Repeticiones de Microsatélite , FilogeografíaRESUMEN
Spontaneous mutations are not randomly distributed throughout a genome. Although mutation hotspots are found on genomes of a variety of species, mechanisms that generate the hotspots are not well understood. In eukaryotes, strong association between a regional nucleotide substitution rate and insertions/deletions (indels) was reported in a previous study, and the "indel-induced mutation" hypothesis was proposed. However, it is unknown whether the association exists even in prokaryote genomes. In this study, we conducted a systematic survey for the association in 262 complete genomes from 73 bacterial species. In these bacteria, the level of nucleotide diversity was negatively correlated with the distance from the closest indel, which is consistent with the eukaryote data. The same pattern was observed even after excluding noncoding sequences, indicating that the difference in functional constraints among genomic regions is not a primary cause of the correlation. In addition, the increase of nucleotide substitution rate was detected disproportionally on a lineage carrying a derived indel mutation, confirming the indel-nucleotide diversity association in the bacterial genomes. In some cases, the level of nucleotide diversity was more than 100 times higher in regions close to indels than in distant regions. Although further understanding of the molecular mechanism is required to test the hypothesis, these results suggest that the same mechanism for the indel-nucleotide diversity associations might exist in eukaryotes and prokaryotes and play an important role in molecular evolution.
Asunto(s)
Bacterias/genética , Variación Genética , Genoma Bacteriano/genética , Mutagénesis Insercional/genética , Eliminación de Secuencia/genética , Secuencia de Bases , Filogenia , Factores de TiempoRESUMEN
BACKGROUND: Rates of molecular evolution vary widely among species. While significant deviations from molecular clock have been found in many taxa, effects of life histories on molecular evolution are not fully understood. In plants, annual/perennial life history traits have long been suspected to influence the evolutionary rates at the molecular level. To date, however, the number of genes investigated on this subject is limited and the conclusions are mixed. To evaluate the possible heterogeneity in evolutionary rates between annual and perennial plants at the genomic level, we investigated 85 nuclear housekeeping genes, 10 non-housekeeping families, and 34 chloroplast genes using the genomic data from model plants including Arabidopsis thaliana and Medicago truncatula for annuals and grape (Vitis vinifera) and popular (Populus trichocarpa) for perennials. RESULTS: According to the cross-comparisons among the four species, 74-82% of the nuclear genes and 71-97% of the chloroplast genes suggested higher rates of molecular evolution in the two annuals than those in the two perennials. The significant heterogeneity in evolutionary rate between annuals and perennials was consistently found both in nonsynonymous sites and synonymous sites. While a linear correlation of evolutionary rates in orthologous genes between species was observed in nonsynonymous sites, the correlation was weak or invisible in synonymous sites. This tendency was clearer in nuclear genes than in chloroplast genes, in which the overall evolutionary rate was small. The slope of the regression line was consistently lower than unity, further confirming the higher evolutionary rate in annuals at the genomic level. CONCLUSIONS: The higher evolutionary rate in annuals than in perennials appears to be a universal phenomenon both in nuclear and chloroplast genomes in the four dicot model plants we investigated. Therefore, such heterogeneity in evolutionary rate should result from factors that have genome-wide influence, most likely those associated with annual/perennial life history. Although we acknowledge current limitations of this kind of study, mainly due to a small sample size available and a distant taxonomic relationship of the model organisms, our results indicate that the genome-wide survey is a promising approach toward further understanding of the mechanism determining the molecular evolutionary rate at the genomic level.
Asunto(s)
Arabidopsis/genética , Evolución Molecular , Genoma de Planta/genética , Medicago truncatula/genética , Núcleo Celular/genética , Cloroplastos/genética , ADN de Cloroplastos/genética , Proteínas Nucleares/genética , Filogenia , Proteínas de Plantas/genética , Plantas/clasificación , Plantas/genética , Populus/genética , Vitis/genéticaRESUMEN
⢠Outcrossing Arabidopsis species that diverged from their inbreeding relative Arabidopsis thaliana 5 million yr ago and display a biogeographical pattern of interspecific sympatry vs intraspecific allopatry provides an ideal model for studying impacts of gene introgression and polyploidization on species diversification. ⢠Flow cytometry analyses detected ploidy polymorphisms of 2× and 4× in Arabidopsis lyrata ssp. kamchatica of Taiwan. Genomic divergence between species/subspecies was estimated based on 98 randomly chosen nuclear genes. Multilocus analyses revealed a mosaic genome in diploid A. l. kamchatica composed of Arabidopsis halleri-like and A. lyrata-like alleles. ⢠Coalescent analyses suggest that the segregation of ancestral polymorphisms alone cannot explain the high inconsistency between gene trees across loci, and that gene introgression via diploid A. l. kamchatica likely distorts the molecular phylogenies of Arabidopsis species. However, not all genes migrated across species freely. Gene ontology analyses suggested that some nonmigrating genes were constrained by natural selection. ⢠High levels of estimated ancestral polymorphisms between A. halleri and A. lyrata suggest that gene flow between these species has not completely ceased since their initial isolation. Polymorphism data of extant populations also imply recent gene flow between the species. Our study reveals that interspecific gene flow affects the genome evolution in Arabidopsis.
Asunto(s)
Arabidopsis/genética , Cruzamientos Genéticos , Flujo Génico/genética , Sitios Genéticos/genética , Variación Genética , Genoma de Planta/genética , Sustitución de Aminoácidos/genética , ADN de Plantas/análisis , Citometría de Flujo , Genes de Plantas/genética , Modelos Genéticos , Filogenia , Ploidias , Especificidad de la EspecieRESUMEN
Migratory organisms have their own life histories that efficiently link multiple ecosystems. Therefore, comprehensive understanding of migration ecologies of these organisms is essential for both species conservation and ecosystem management. However, monitoring migration at fine spatiotemporal scales, especially in open marine systems, often requires huge costs and effort. Recently, environmental DNA (eDNA) techniques that utilize DNA released from living organisms into their environment became available for monitoring wild animals without direct handling. In this study, we conducted an eDNA survey for understanding marine migration of an endemic fish species, Shishamo smelt (Spirinchus lanceolatus). We examined 1) seasonal habitat changes in coastal regions and 2) environmental factors potentially driving the migration of this species. The eDNA concentrations along a 100 km-long coastline exhibited spatiotemporal variation, suggesting that this species shifts their habitat away from nearshore areas between spring and summer. We also found a significantly negative association between the eDNA concentration and sea surface temperature. That finding suggests that the offshore migration of this species is associated with increased sea surface temperature. This study reveals new aspects of S. lanceolatus life history in coastal regions. Together with our previous eDNA study on the freshwater migration of S. lanceolatus, this study illustrates the potential of eDNA techniques for understanding the whole life history of this migratory species.
Asunto(s)
Migración Animal , ADN Ambiental/genética , Osmeriformes/fisiología , Animales , Ecosistema , Osmeriformes/genética , Estaciones del AñoRESUMEN
Supplementation of wild populations with captive-bred organisms is a common practice for conservation of threatened wild populations. Yet it is largely unknown whether such programmes actually help population size recovery. While a negative genetic effect of captive breeding that decreases fitness of captive-bred organisms has been detected, there is no direct evidence for a carry-over effect of captive breeding in their wild-born descendants, which would drag down the fitness of the wild population in subsequent generations. In this study, we use genetic parentage assignments to reconstruct a pedigree and estimate reproductive fitness of the wild-born descendants of captive-bred parents in a supplemented population of steelhead trout (Oncorhynchus mykiss). The estimated fitness varied among years, but overall relative reproductive fitness was only 37 per cent in wild-born fish from two captive-bred parents and 87 per cent in those from one captive-bred and one wild parent (relative to those from two wild parents). Our results suggest a significant carry-over effect of captive breeding, which has negative influence on the size of the wild population in the generation after supplementation. In this population, the population fitness could have been 8 per cent higher if there was no carry-over effect during the study period.
Asunto(s)
Cruzamiento , Conservación de los Recursos Naturales , Oncorhynchus mykiss/fisiología , Reproducción/genética , Animales , Femenino , Masculino , Oncorhynchus mykiss/genética , Densidad de PoblaciónRESUMEN
To understand the ecology of juvenile chum salmon during early marine life after their downstream migration, we developed a quantitative PCR-based environmental DNA (eDNA) method specific for chum salmon and investigated the spatiotemporal distribution of eDNA in Otsuchi Bay, Iwate, Japan. Indoor aquarium experiments demonstrated the following characteristics of chum salmon eDNA: (1) the eDNA shedding and degradation were time- and water temperature-dependent and the bacterial abundance could contribute to the eDNA decay, (2) fecal discharge may not be the main source of eDNA, and (3) a strong positive Pearson correlation was found between the number of juveniles and the eDNA amounts. As we discovered strong PCR inhibition from the seawater samples of the bay, we optimized the eDNA assay protocol for natural seawater samples by adding a further purification step and modification of PCR mixture. The intensive eDNA analysis in the spring of 2017 and 2018 indicated that juvenile chum salmon initially inhabited in shallow waters in the shorefront area and then spread over the bay from January to June. The eDNA data also pointed out that outmigration of juvenile chum salmon to open ocean temporarily suspended in April, possibly being associated with the dynamics of the Oyashio Current as suggested by a previous observation. The eDNA method thus enables us large-scale and comprehensive surveys without affecting populations to understand the spatiotemporal dynamics of juvenile chum salmon.
Asunto(s)
ADN Ambiental , Monitoreo del Ambiente , Oncorhynchus keta/genética , Análisis Espacio-Temporal , Animales , Bahías , Japón , Especificidad de la Especie , Encuestas y CuestionariosRESUMEN
While information for single nucleotide polymorphism is accumulating in many organisms, little is known about the magnitude and the occurrence of nucleotide dimorphism or higher order structural polymorphisms (grouped nucleotide polymorphisms or GNPs). To address these questions, we systematically investigated the genetic variations of 996 loci in 96 Arabidopsis accessions. Our data suggest that GNP loci are highly frequent in the genomes (40.4% of 996 loci), and that 66.7% of genetic variation in 996 loci is attributed to GNPs. The frequency distribution and the linkage analysis of GNP loci demonstrate that GNPs occurred randomly, locally, ceaselessly and independently in general, although they are particularly abundant in the region near centromeres. The age distribution of GNP loci shows that the majority of these loci are under a transient phase of neutral evolution. The characteristics of GNPs imply that a molecular isolation exists in GNP loci, and most likely the indels caused isolation, which could explain how GNPs are generated and maintained.
Asunto(s)
Arabidopsis/genética , Variación Genética , Genoma de Planta , Nucleótidos/genética , Polimorfismo Genético , Evolución Molecular , Frecuencia de los Genes , Genes de Plantas , Flujo Genético , Ligamiento Genético , Polimorfismo de Nucleótido SimpleRESUMEN
The bacterial pathogen Pseudomonas viridiflava possesses two pathogenicity islands (PAIs) that share many gene homologs, but are structurally and phenotypically differentiated (T-PAI and S-PAI). These PAIs are paralogous, but only one is present in each isolate. While this dual presence/absence polymorphism has been shown to be maintained by balancing selection, little is known about the molecular evolution of individual genes on the PAIs. Here we investigate genetic variation of 12 PAI gene loci (7 on T-PAI and 5 on S-PAI) in 96 worldwide isolates of P. viridiflava. These genes include avirulence genes (hopPsyA and avrE), their putative chaperones (shcA and avrF), and genes encoding the type III outer proteins (hrpA, hrpZ, and hrpW). Average nucleotide diversities in these genes (pi = 0.004-0.020) were close to those in the genetic background. Large numbers of recombination events were found within PAIs and a sign of positive selection was detected in avrE. These results suggest that the PAI genes are evolving relatively freely from each other on the PAIs, rather than as a single unit under balancing selection. Evolutionarily stable PAIs may be preferable in this species because preexisting genetic variation enables P. viridiflava to respond rapidly to natural selection.
Asunto(s)
Evolución Molecular , Islas Genómicas/genética , Pseudomonas/genética , Secuencia de Bases , Genes Bacterianos/genética , Variación Genética , Datos de Secuencia Molecular , Recombinación Genética , Selección GenéticaRESUMEN
The RPW8 locus of Arabidopsis thaliana confers broad-spectrum resistance to powdery mildew pathogens. In many A. thaliana accessions, this locus contains two homologous genes, RPW8.1 and RPW8.2. In some susceptible accessions, however, these two genes are replaced by HR4, a homolog of RPW8.1. Here, we show that RPW8.2 from A. lyrata conferred powdery mildew resistance in A. thaliana, suggesting that RPW8.2 might have gained the resistance function before the speciation of A. thaliana and A. lyrata. To investigate how RPW8 has been maintained in A. thaliana, we examined the nucleotide sequence polymorphisms in RPW8 from 51 A. thaliana accessions, related disease reaction phenotypes to the evolutionary history of RPW8.1 and RPW8.2, and identified mutations that confer phenotypic variations. The average nucleotide diversities were high at RPW8.1 and RPW8.2, showing no sign of selective sweep. Moreover, we found that expression of RPW8 incurs fitness benefits and costs on A. thaliana in the presence and absence of the pathogens, respectively. Our results suggest that polymorphisms at the RPW8 locus in A. thaliana may have been maintained by complex selective forces, including those from the fitness benefits and costs both associated with RPW8.
Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genes de Plantas , Ascomicetos/patogenicidad , Secuencia de Bases , ADN de Plantas/genética , Evolución Molecular , Variación Genética , Datos de Secuencia Molecular , Fenotipo , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Homología de Secuencia de Ácido Nucleico , Factores de TiempoRESUMEN
For patients with locally advanced HNSCC, where the outcome with conventional radiotherapy is poor, meta-analysis and collective data showed a high level of evidence of loco-regional control improvement by altered fractionated radiotherapy, chemo-radiotherapy with a concomitant approach. For these patients, much evidence indicates overall survival may be improved by concomitant chemo-radiotherapy or hyper-fractionated radiotherapy delivered with increased total dose. There was a significant survival benefit with altered fractionated radiotherapy, corresponding to an absolute benefit of 3.4% at 5 years. The benefit was significantly higher with hyper-fractionated radiotherapy (8% at 5 years)than with accelerated radiotherapy (2% with accelerated fractionation without total dose reduction and 1.7% with total dose reduction at 5 years). The effect was greater for the primary tumor than for nodal disease. The effect was also more pronounced in younger patients and in those with good performance status. Hyper-fractionation seemed to yield a more consistent advantage for survival than accelerated fractionated radiotherapy. However, accelerated radiotherapy might be associated with higher non-cancer-related death. Despite hundreds of clinical trials in patients with advanced disease, there is no absolute consensus about patient selection for altered fractionation regimens, type of chemo-radiotherapy association, and radiation of chemotherapy dose schedule. We have to evaluate whether the benefit of hyper-fractionated radiotherapy versus standard radiotherapy persists when combined with concomitant chemotherapy and the benefit of IMRT compared with altered fractionation.
Asunto(s)
Fraccionamiento de la Dosis de Radiación , Neoplasias de Cabeza y Cuello/mortalidad , Neoplasias de Cabeza y Cuello/radioterapia , Terapia Combinada , Humanos , Oncología por Radiación/métodos , Tasa de SupervivenciaRESUMEN
Genetic interaction between domesticated escapees and wild conspecifics represents a persistent challenge to an environmentally sustainable Atlantic salmon aquaculture industry. We used a recently developed eco-genetic model (IBSEM) to investigate potential changes in a wild salmon population subject to spawning intrusion from domesticated escapees. At low intrusion levels (5%-10% escapees), phenotypic and demographic characteristics of the recipient wild population only displayed weak changes over 50 years and only at high intrusion levels (30%-50% escapees) were clear changes visible in this period. Our modeling also revealed that genetic changes in phenotypic and demographic characteristics were greater in situations where strayers originating from a neighboring wild population were domestication-admixed and changed in parallel with the focal wild population, as opposed to nonadmixed. While recovery in the phenotypic and demographic characteristics was observed in many instances after domesticated salmon intrusion was halted, in the most extreme intrusion scenario, the population went extinct. Based upon results from these simulations, together with existing knowledge, we suggest that a combination of reduced spawning success of domesticated escapees, natural selection purging maladapted phenotypes/genotypes from the wild population, and phenotypic plasticity, buffer the rate and magnitude of change in phenotypic and demographic characteristics of wild populations subject to spawning intrusion of domesticated escapees. The results of our simulations also suggest that under specific conditions, natural straying among wild populations may buffer genetic changes in phenotypic and demographic characteristics resulting from introgression of domesticated escapees and that variation in straying in time and space may contribute to observed differences in domestication-driven introgression among native populations.
RESUMEN
Exposure to electromagnetic radiation can have a profound impact on human health. Ultraviolet (UV) radiation from the sun causes skin cancer. Blue light affects the body's circadian melatonin rhythm. At the same time, electromagnetic radiation in controlled quantities has beneficial use. UV light treats various inflammatory skin conditions, and blue light phototherapy is the standard of care for neonatal jaundice. Although quantitative measurements of exposure in these contexts are important, current systems have limited applicability outside of laboratories because of an unfavorable set of factors in bulk, weight, cost, and accuracy. We present optical metrology approaches, optoelectronic designs, and wireless modes of operation that serve as the basis for miniature, low-cost, and battery-free devices for precise dosimetry at multiple wavelengths. These platforms use a system on a chip with near-field communication functionality, a radio frequency antenna, photodiodes, supercapacitors, and a transistor to exploit a continuous accumulation mechanism for measurement. Experimental and computational studies of the individual components, the collective systems, and the performance parameters highlight the operating principles and design considerations. Evaluations on human participants monitored solar UV exposure during outdoor activities, captured instantaneous and cumulative exposure during blue light phototherapy in neonatal intensive care units, and tracked light illumination for seasonal affective disorder phototherapy. Versatile applications of this dosimetry platform provide means for consumers and medical providers to modulate light exposure across the electromagnetic spectrum in a way that can both reduce risks in the context of excessive exposure and optimize benefits in the context of phototherapy.
Asunto(s)
Suministros de Energía Eléctrica , Miniaturización/instrumentación , Fototerapia , Dosímetros de Radiación , Exposición a la Radiación , Monitoreo de Radiación/instrumentación , Luz Solar , Tecnología Inalámbrica , Humanos , Recién Nacido , Unidades de Cuidado Intensivo Neonatal , Rayos UltravioletaRESUMEN
Excessive ultraviolet (UV) radiation induces acute and chronic effects on the skin, eye and immune system. Personalized monitoring of UV radiation is thus paramount to measure the extent of personal sun exposure, which could vary with environment, lifestyle, and sunscreen use. Here, we demonstrate an ultralow modulus, stretchable, skin-mounted UV patch that measures personal UV doses. The patch contains functional layers of ultrathin stretchable electronics and a photosensitive patterned dye that reacts to UV radiation. Color changes in the photosensitive dyes correspond to UV radiation intensity and are analyzed with a smartphone camera. A software application has feature recognition, lighting condition correction, and quantification algorithms that detect and quantify changes in color. These color changes are then correlated with corresponding shifts in UV dose, and compared to existing UV dose risk levels. The soft mechanics of the UV patch allow for multi-day wear in the presence of sunscreen and water. Two evaluation studies serve to demonstrate the utility of the UV patch during daily activities with and without sunscreen application.
Asunto(s)
Electrónica , Epidermis/fisiología , Fotoquímica , Rayos Ultravioleta , Algoritmos , Colorantes , HumanosRESUMEN
BACKGROUND: Individuals in the same species are assumed to share the same genomic set. However, it is not unusual to find an orthologous gene only in small subset of the species, and recent genomic studies suggest that structural rearrangements are very frequent between genomes in the same species. Two recently sequenced rice genomes Oryza sativa L. var. Nipponbare and O. sativa L. var. 93-11 provide an opportunity to systematically investigate the extent of the gene repertoire polymorphism, even though the genomic data of 93-11 derived from whole-short-gun sequencing is not yet as complete as that of Nipponbare. RESULTS: We compared gene contents and the genomic locations between two rice genomes. Our conservative estimates suggest that at least 10% of the genes in the genomes were either under presence/absence polymorphism (5.2%) or asymmetrically located between genomes (4.7%). The proportion of these "asymmetric genes" varied largely among gene groups, in which disease resistance (R) genes and the RLK kinase gene group had 11.6 and 7.8 times higher proportion of asymmetric genes than housekeeping genes (Myb and MADS). The significant difference in the proportion of asymmetric genes among gene groups suggests that natural selection is responsible for maintaining genomic asymmetry. On the other hand, the nucleotide diversity in 17 R genes under presence/absence polymorphism was generally low (average nucleotide diversity = 0.0051). CONCLUSION: The genomic symmetry was disrupted by 10% of asymmetric genes, which could cause genetic variation through more unequal crossing over, because these genes had no allelic counterparts to pair and then they were free to pair with homologues at non-allelic loci, during meiosis in heterozygotes. It might be a consequence of diversifying selection that increased the structural divergence among genomes, and of purifying selection that decreased nucleotide divergence in each R gene locus.
Asunto(s)
Genoma de Planta/genética , Oryza/genética , Polimorfismo Genético , Secuencia de Bases , Inmunidad Innata/genética , Datos de Secuencia Molecular , Proteínas Quinasas/genéticaRESUMEN
High levels of inter-specific diversity are expected due to genetic isolation, the reproductive or geographical barriers, which lead to the accumulation of nucleotide variation. However, high levels of genetic variation are repeatedly observed even within species, notably at loci of the human major histocompatability complex and of plant resistance genes. Are molecular isolations responsible for the high intra-specific variation? To address this issue, we performed a genome-wide survey of the relationship between the possible factors that could cause genetic isolation, and the level of polymorphism, based on two rice genome comparisons. Here, we show that the levels of polymorphism in rice genes are positively correlated with the proportions of non-alignable flanking sequences, and that the correlation is observed even in single-copy genes. The physical locations of the genes were also investigated, and a strong association between the asymmetric architecture of genomes and the levels of polymorphism was revealed. These results suggest that the flank heterogeneity and the asymmetric architecture between genomes serve as isolation mechanisms at the molecular level that result in accumulation of higher genetic variation. This mechanism is of fundamental importance to understand natural genetic variation within species.