Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Environ Res ; 204(Pt C): 112339, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34740624

RESUMEN

Chlortetracycline (CTC) degradation using potential microbial consortia or individual bacterial strains was useful method for improving bioremediation potential. The co-culture (Klebsiella pneumoniae CH3 and Bacillus amyloliquefaciens CS1) of bacterial strains have the ability to degrade chlortetracycline (91.8 ± 1.7%), followed by sulfamethoxazole (62.1 ± 1.2%) and amoxicillin (73.9 ± 3.3%). It was observed that the degradation potential was maximum after 10 days incubation, 8-10% inoculum, pH 7.5, and antibiotic concentration ranged from 150 to 200 mg/L. The initial concentrations of CTC significantly affected CTC degradation. In strain CH3, maximum biodegradation of CTC (99.4 ± 2.3%) was observed at 200 mg/L initial CTC concentrations. In CS1, maximum biodegradation of CTC was obtained at 150 mg/L concentration (80.5 ± 3.2%) after 10 days of culture. Alkaline pH was found to be suitable for the degradation of antibiotic than acidic range. After initial optimization by one factor at a time approach in free cells, the bacterial strains (CH3 and CS1) were co-immobilized. The co-immobilized bacterial cells showed improved degradation potential than free cells. To determine the biodegradation potential of immobilized cells, the selected strains were immobilized in polymer beads and treated with CTC with 175 mg/L initial concentration. The experimental results revealed that after 3 days of treatment the residual CTC concentration was 150.1 ± 3.2 mg/L and it decreased as 1.28 ± 0.01 mg/L after 10 days of treatment. The present study confirmed the effectiveness and feasibility of biodegradation ability of K. pneumoniae CH3 and B. amyloliquefaciens CS1 immobilized for CTC degradation in wastewater.


Asunto(s)
Clortetraciclina , Antibacterianos , Bacterias/metabolismo , Biodegradación Ambiental , Clortetraciclina/análisis , Aguas Residuales
2.
Environ Res ; 204(Pt B): 112115, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34563525

RESUMEN

Lead is one of the highly toxic heavy metals causes various diseases even at very lower concentrations to human and affects eco-system. It is mainly released into the water through industrial activities. Phytoremediation is useful to degrade, reduce, metabolize and assimilate lead from wastewater. In this study, Turbinaria ornata was collected from the sea and dried biomass was used for biosorption of heavy metals. Adsorption of heavy metal was maximum after 100 min incubation with alga powder at acidic pH (4.5). The interactive effects of lead concentration, contact times, pH, biomass concentration and agitation speed was evaluated by a two-level full factorial design. Initial lead concentration, agitation speed and biomass concentration were the most important variables affecting lead removal (p < 0.001) were selected for optimization using central composite rotatable design. Lead removal was found to be maximum (99.8%) in optimized conditions: initial lead 99.8 mg/L, 250 rpm agitation speed and 16.2 g/L biomass concentrations. Municipal wastewater was collected and lead concentration (0.013 mg/L) and physiochemical factors were analyzed. Algal biomass removed >98.5% lead form the wastewater within 10 min in an optimized condition. The present study confirmed the potential application of T. ornata for the removal of lead from contaminated environment.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Biodegradación Ambiental , Biomasa , Residuos Peligrosos , Humanos , Concentración de Iones de Hidrógeno , Aguas Residuales
3.
Cell Biol Int ; 45(11): 2331-2346, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34314086

RESUMEN

In this study, we have identified a novel peptide NV14 with antioxidative functions from serine O-acetyltransferase (SAT) of Artrospira platensis (Ap). The full sequence of ApSAT and its derived NV14 peptide "NVRIGAGSVVLRDV" (141-154) was characterized using bioinformatics tools. To address the transcriptional activity of ApSAT in response to induce generic oxidative stress, the spirulina culture was exposed to H2 O2 (10 mM). The ApSAT expression was studied using RT-PCR across various time points and it was found that the expression of the ApSAT was significantly upregulated on Day 15. The in vitro cytotoxicity assay against NV14 was performed in human dermal fibroblast cells and human blood leukocytes. Results showed that NV14 treatment was non-cytotoxic to the cells. Besides, in vivo treatment of NV14 in zebrafish larvae did not exhibit the signs of developmental toxicity. Further, the in vitro antioxidant assays enhanced the activity of the antioxidant enzymes, such as SOD and CAT, due to NV14 treatment; and also significantly reduced the MDA levels, while increasing the superoxide radical and H2 O2 scavenging activity. The expression of antioxidant enzyme genes glutathione peroxidase, γ-glutamyl cysteine synthase, and glutathione S-transferase were found to be upregulated in the NV14 peptide pretreated zebrafish larvae when induced with generic oxidative stress, H2 O2 . Overall, the study showed that NV14 peptide possessed potent antioxidant properties, which were demonstrated over both in vitro and in vivo assays. NV14 enhanced the expression of antioxidant enzyme genes at the molecular level, thereby modulating and reversing the cellular antioxidant balance disrupted due to the H2 O2 -induced oxidative stress.


Asunto(s)
Antioxidantes/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Serina O-Acetiltransferasa/genética , Animales , Antioxidantes/metabolismo , Cianobacterias/genética , Cianobacterias/metabolismo , Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Peróxido de Hidrógeno/farmacología , Larva/metabolismo , Estrés Oxidativo/efectos de los fármacos , Péptidos , Serina O-Acetiltransferasa/metabolismo , Superóxido Dismutasa/metabolismo , Pez Cebra/genética
4.
Mol Biol Rep ; 48(8): 5857-5872, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34302266

RESUMEN

BACKGROUND: Plant-derived phytochemicals such as flavonoids have been explored to be powerful antioxidants that protect against oxidative stress-related diseases. In the present study, Morin, a flavonoid compound was studied for its antioxidant and antidiabetic properties in relation to oxidative stress in insulin resistant models conducted in rat skeletal muscle L6 cell line model. METHODS: Evaluation of antioxidant property of morin was assayed using in vitro methods such as cell viability by MTT assay, estimation of SOD and CAT activity and NO scavenging activity. The anti-oxidative nature of morin on L6 cell line was conducted by the DCF-DA fluorescent activity. Glucose uptake in morin treated L6 myotubes are accessed by 2-NBDG assay in the presence or absence of IRTK and PI3K inhibitors. Further glycogen content estimation due to the morin treatment in L6 myotubes was performed. Antioxidant and insulin signaling pathway gene expression was examined over RT-PCR analysis. RESULTS: Morin has a negligible cytotoxic effect at doses of 20, 40, 60, 80, and 100 µM concentration according to cell viability assay. Morin revealed that the levels of the antioxidant enzymes SOD and CAT in L6 myotubes had increased. When the cells were subjected to the nitro blue tetrazolium assay, morin lowered reactive oxygen species (ROS) formation at 60 µM concentration displaying 39% ROS generation in oxidative stress condition. Lesser NO activity and a drop in green fluorescence emission in the DCFDA assay, demonstrating its anti-oxidative nature by reducing ROS formation in vitro. Glucose uptake by the L6 myotube cells using 2-NBDG, and with IRTK and PI3K inhibitors (genistein and wortmannin) showed a significant increase in glucose uptake by the cells which shows the up regulated GLUT-4 movement from intracellular pool to the plasma membrane. Morin (60 µM) significantly enhanced the expression of antioxidant genes GPx, GST and GCS as well as insulin signalling genes IRTK, IRS-1, PI3K, GLUT-4, GSK-3ß and GS in L6 myotubes treated cells. CONCLUSION: Morin has the ability to act as an anti-oxidant by lowering ROS levels and demonstrating insulin mimetic activity by reversing insulin resistance associated with oxidative stress.


Asunto(s)
Flavonoides/farmacología , Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Animales , Antioxidantes/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Flavonoides/metabolismo , Glucosa/metabolismo , Glucógeno/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hipoglucemiantes/farmacología , Resistencia a la Insulina/fisiología , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
5.
Environ Res ; 200: 111777, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34333016

RESUMEN

The presence of antibiotics in the wastewater is one of the important issues related to environmental management. In this study, antibiotics-degrading bacteria were screened from the enriched sewage sludge sample. Among the isolated bacterial strains, Bacillus subtilis AQ03 showed maximum antibiotic tolerance (>2000 ppm). The characterized strain B. subtilis AQ03 degraded sulfamethaoxazole and sulfamethoxine and the optimum nutrient and physical-factors were analyzed. B. subtilis AQ03 degraded 99.8 ± 1.3 % sulfamethaoxazole, and 93.3 ± 6.2 % sulfamethoxine. Sodium nitrate and ammonium chloride were improved antibiotics degradation (<90 %). The optimized conditions were maintained in a moving bed bioreactor for the removal of antibiotics and nutrients from the wastewater. The selected strain considerably produced proteases (109.4 U/mL), amylases (55.1 U/mL), cellulase (9.6 U/mL) and laccases (15.2). In moving bed reactor, sulfamethaoxazole degradation was maximum after 8 days (100 ± 1.5 %) and sulfamethoxazole (100 ± 0) was removed completely from wastewater after 10 days. In moving bed reactor, biological oxygen demand (92.1 ± 2.8 %), chemical oxygen demand (79.6 ± 1.2 %), nitrate (89.4 ± 3.9 %) and phosphate (91.8 ± 1.2) were removed from the wastewater along with antibiotics after 10 days of treatment. The findings indicate that the indigenous bacterial communities and the ability to survive in the presence of high antibiotic concentrations and xenobiotics. Moving bed bioreactor is useful for the removal of nutrients and antibiotics from wastewater.


Asunto(s)
Preparaciones Farmacéuticas , Aguas Residuales , Reactores Biológicos , Nutrientes , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
6.
Environ Res ; 202: 111918, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34419465

RESUMEN

Nowadays world deals with a lot of environmental troubles out of which water pollution is very dangerous. Water gets contaminated by heavy metal ions is a universal problem which needs suitable consideration to keep up the quality of the water. It will be advantageous that an easy device can be detecting the concentration of heavy metal ions in water. Here, a contaminant, cadmium from industrial affluent into water is considered and focused. Gold nanoparticles (AuNPs) have been synthesized by Solanum trilobatum leaf extract and its applications of antifungal and sensing activity was reported here. The influences of different concentration of these reducing agent on the synthesis of AuNPs (G5 and G10) have been evaluated. The structural, optical, vibrational, morphological and compositional properties of the AuNPs were studied through XRD, UV-vis spectra, FTIR, HRTEM and EDAX analysis. The optical studies showed surface plasmon absorbance peak at 526 nm. It shows that the absorbance of the peak becomes narrow with a higher concentration of leaf extract. XRD results showed the average size of the AuNPs was 8 nm. It also confirmed the high crystallinity of nanoparticles. FTIR exposes that amine and carboxyl groups may be involved in the stabilization and reduction mechanism. TEM pictures of both G10 and G5 demonstrate merely spherical nanoparticles. This morphology control is taken place owing to the adsorbed amine and carboxyl groups onto the gold nanoparticles cap the particles and improve the stability. The presence of gold elements in the sample was identified with the help of EDAX. The sensitivity of the system towards various Cd2+ concentrations was measured as 0.058/mM for G5 and 0.095/mM for G10. The prepared nanoparticles produced highest zone of inhibition (ZOI) of 17.5 mm and 19 mm against human being pathogenic fungi Aspergillus Flavus and Candida albicans respectively. Here, small sized spherical nanoparticles showed good antifungal activity.


Asunto(s)
Nanopartículas del Metal , Solanum , Cadmio , Oro , Tecnología Química Verde , Humanos , Fotoquímica , Extractos Vegetales , Agua
7.
Environ Res ; 202: 111669, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34252429

RESUMEN

The waste water released from industries which contain pollutants like heavy metals, dyes and other toxic chemicals brings numerous harms to the ecosystem and humans. Nowadays the nanocomposites based technologies are effectively used for environmental remediation. In the present study, hexavalent chromium was removed from the industrial effluent using magnetite carbon nanocomposite. The nanocomposite composed of highly porous carbon and iron oxide nanoparticles prepared by using agrowastes (sugarcane bagasse and orange peel extract). Iron oxide nanoparticles (FeONPs) formation was confirmed by UV-visible spectroscopy; incorporation of magnetite with highly porous carbon was established by Fourier Transforms Infrared Spectroscopy and X-ray Diffraction Spectroscopy. Morphological features of magnetite nanoparticles and highly porous carbon were analyzed using Scanning Electron Microscope and Transmission Electron Microscope. Magnetic properties analyzed by Vibrating Sample Magnetometer revealed magnetite carbon nanocomposite exhibited better Ms value than highly porous carbon. The concentration of Cr6+ in treated effluent was determined using Atomic Absorption Spectroscopy. Pseudo-second order equation fitted with kinetics and the Langmuir monolayer favors for isotherm. This study reveals efficiency in Cr6+ removal from effluent using magnetite carbon nanocomposites which extends their application in waste water treatment.


Asunto(s)
Nanopartículas de Magnetita , Nanocompuestos , Contaminantes Químicos del Agua , Adsorción , Carbono , Cromo , Ecosistema , Óxido Ferrosoférrico , Humanos , Cinética , Aguas Residuales , Contaminantes Químicos del Agua/análisis
8.
Molecules ; 26(6)2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33809963

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome corona virus-2 (SARS-CoV-2), is the most important health issue, internationally. With no specific and effective antiviral therapy for COVID-19, new or repurposed antiviral are urgently needed. Phytochemicals pose a ray of hope for human health during this pandemic, and a great deal of research is concentrated on it. Phytochemicals have been used as antiviral agents against several viruses since they could inhibit several viruses via different mechanisms of direct inhibition either at the viral entry point or the replication stages and via immunomodulation potentials. Recent evidence also suggests that some plants and its components have shown promising antiviral properties against SARS-CoV-2. This review summarizes certain phytochemical agents along with their mode of actions and potential antiviral activities against important viral pathogens. A special focus has been given on medicinal plants and their extracts as well as herbs which have shown promising results to combat SARS-CoV-2 infection and can be useful in treating patients with COVID-19 as alternatives for treatment under phytotherapy approaches during this devastating pandemic situation.


Asunto(s)
Antivirales/farmacología , Fitoquímicos/farmacología , Plantas Medicinales/química , SARS-CoV-2/patogenicidad , Antivirales/química , Humanos , India , Fitoquímicos/química , Extractos Vegetales/farmacología , SARS-CoV-2/química , Tratamiento Farmacológico de COVID-19
9.
Cell Biol Int ; 44(11): 2231-2242, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32716104

RESUMEN

This study demonstrates both the antioxidant and anticancer potential of the novel short molecule YT12 derived from peroxiredoxin (Prx) of spirulina, Arthrospira platensis (Ap). ApPrx showed significant reduction in reactive oxygen species (ROS) against hydrogen peroxide (H2 O2 ) stress. The complementary DNA sequence of ApPrx contained 706 nucleotides and its coding region possessed 546 nucleotides between position 115 and 660. Real-time quantitative reverse transcription polymerase chain reaction analysis confirmed the messenger RNA expression of ApPrx due to H2 O2 exposure in spirulina cells at regular intervals, in which the highest expression was noticed on Day 20. Cytotoxicity assay was performed using human peripheral blood mononuclear cells, and revealed that at 10 µM, the YT12 did not exhibit any notable toxicity. Furthermore, ROS scavenging activity of YT12 was performed using DCF-DA assay, in which YT12 scavenged a significant amount of ROS at 25 µM in H2 O2 -treated blood leukocytes. The intracellular ROS in human colon adenocarcinoma cells (HT-29) was regulated by oxidative stress, where the YT12 scavenges ROS in HT-29 cells at 12.5 µM. Findings show that YT12 peptide has anticancer activity, when treated against HT-29 cells. Through the MTT assay, YT12 showed vital cytotoxicity against HT-29 cells. These finding suggested that YT12 is a potent antioxidant molecule which defends ROS against oxidative stress and plays a role in redox balance.


Asunto(s)
Peroxirredoxinas/metabolismo , Spirulina/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Línea Celular Tumoral , Humanos , Peróxido de Hidrógeno/metabolismo , Leucocitos Mononucleares/metabolismo , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/fisiología , Péptidos/metabolismo , Péptidos/farmacología , Peroxirredoxinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Spirulina/genética
10.
Fish Shellfish Immunol ; 106: 332-340, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32758637

RESUMEN

The occurrences of multiple drug-resistant strains have been relentlessly increasing in recent years. The aquaculture industry has encountered major disease outbreaks and crucially affected by this situation. The usage of non-specific chemicals and antibiotics expedites the stimulation of resistant strains. Triggering the natural defense mechanism would provide an effective and safest way of protecting the host system. Hence, we have investigated the innate immune function of serine/threonine-protein kinase (STPK) in Macrobrachium rosenbergii (Mr). The in-silico protein analysis resulted in the identification of cationic antimicrobial peptide, MrSL-19, with interesting properties from STPK of M. rosenbergii. Antimicrobial assay, FACS and SEM analysis demonstrated that the peptide potentially inhibits Staphylococcus aureus by interacting with its membrane. The toxic study on MrSL-19 demonstrated that the peptide is not toxic against HEK293 cells as well as human erythrocytes. This investigation showed the significant innate immune property of an efficient cationic antimicrobial peptide, MrSL-19 of STPK from M. rosenbergii.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata/genética , Palaemonidae/genética , Palaemonidae/inmunología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Perfilación de la Expresión Génica , Filogenia , Proteínas Serina-Treonina Quinasas/química , Alineación de Secuencia
11.
Mol Biol Rep ; 47(9): 6727-6740, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32809102

RESUMEN

Understanding the mechanism by which the exogenous biomolecule modulates the GLUT-4 signalling cascade along with the information on glucose metabolism is essential for finding solutions to increasing cases of diabetes and metabolic disease. This study aimed at investigating the effect of hamamelitannin on glycogen synthesis in an insulin resistance model using L6 myotubes. Glucose uptake was determined using 2-deoxy-D-[1-3H] glucose and glycogen synthesis were also estimated in L6 myotubes. The expression levels of key genes and proteins involved in the insulin-signaling pathway were determined using real-time PCR and western blot techniques. The cells treated with various concentrations of hamamelitannin (20 µM to 100 µM) for 24 h showed that, the exposure of hamamelitannin was not cytotoxic to L6 myotubes. Further the 2-deoxy-D-[1-3H] glucose uptake assay was carried out in the presence of wortmannin and Genistein inhibitor for studying the GLUT-4 dependent cell surface recruitment. Hamamelitannin exhibited anti-diabetic activity by displaying a significant increase in glucose uptake (125.1%) and glycogen storage (8.7 mM) in a dose-dependent manner. The optimum concentration evincing maximum activity was found to be 100 µm. In addition, the expression of key genes and proteins involved in the insulin signaling pathway was studied to be upregulated by hamamelitannin treatment. Western blot analysis confirmed the translocation of GLUT-4 protein from an intracellular pool to the plasma membrane. Therefore, it can be conceived that hamamelitannin exhibited an insulinomimetic effect by enhancing the glucose uptake and its further conversion into glycogen by regulating glucose metabolism.


Asunto(s)
Ácido Gálico/análogos & derivados , Transportador de Glucosa de Tipo 4/metabolismo , Glucosa/metabolismo , Glucógeno/metabolismo , Hexosas/farmacología , Insulina/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/efectos de los fármacos , Animales , Transporte Biológico/efectos de los fármacos , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ácido Gálico/metabolismo , Ácido Gálico/farmacología , Genisteína/farmacología , Transportador de Glucosa de Tipo 4/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hexosas/metabolismo , Insulina/farmacología , Antagonistas de Insulina/farmacología , Resistencia a la Insulina , Mioblastos/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Wortmanina/farmacología
12.
J Environ Manage ; 234: 154-158, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30616187

RESUMEN

Accumulation of solid waste has intensified with the increase in world population and industrialization. Most importantly, wastes of animal origin such as animal manures and tannery wastes are a major under-utilized resource in most countries with potential for utilization in crop production. This study evaluated the potential of solid state hydrolyzed tannery animal fleshing (SSF-ANFL) and submerged state hydrolyzed tannery ANFL (SmF-ANFL) vermicompost and compost amended soils on the growth, yield and chemical characteristics of tomatoes. It was interesting to observe that of most measured parameters, the SSF amended treatments resulted in significantly (P < 0.05) the highest measurements compared to the SmF amended treatments. On average, the SSF vermicompost resulted in a 10%, 8.9% and 14% higher plant height, stem girth and leaf numbers, respectively, compared to other treatments combined. It was also noteworthy that, for the same parameters, the SSF-ANFL based treatments resulted in a 7.7%, 10.1% and 7.4% higher plant height, stem girth and leaf numbers, respectively, relative to the SmF-ANFL based treatments. The study demonstrates the potential of animal fleshing based vermicomposts as nutrient sources in crop production.


Asunto(s)
Compostaje , Solanum lycopersicum , Animales , Estiércol , Suelo , Residuos Sólidos
13.
Mol Biol Rep ; 45(5): 829-838, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29978380

RESUMEN

To gain genetic insights into the protein-rich microalga, the transcriptome of Arthrospira platensis was sequenced using Illumina technology and de novo assembly was carried out. A total of 6023 transcripts were present in the transcriptome among which 4616 transcripts were annotated with specific functions. Gene ontology analysis revealed that the genes are mainly involved in three major functions such as biological (16.19%), cellular (41.47%) and molecular (42.34%) processes. Pathway analysis indicated that majority of genes are involved in amino acid biosynthesis and metabolism which is depicting the protein-rich nature of spirulina. Other major pathways involved are carbohydrate metabolism, lipid metabolism, metabolism of co-factors and vitamins, antioxidant mechanism and metabolism of terpenoids and polyketides. qRT-PCR analysis was performed to confirm the potential antioxidant role of five candidate genes of spirulina in protecting the cells from oxidative stress induced by hydrogen peroxide. Moreover, these results indicated that spirulina is rich in biological resources which could be efficiently used for multiple applications such as carbon dioxide utilization, nitrogen fixation and biofuel production.


Asunto(s)
Proteínas Bacterianas/genética , Perfilación de la Expresión Génica/métodos , Spirulina/genética , Metabolismo de los Hidratos de Carbono , Regulación Bacteriana de la Expresión Génica , Ontología de Genes , Metabolismo de los Lípidos , Estrés Oxidativo , Análisis de Secuencia de ARN
14.
Mol Biol Rep ; 45(6): 2511-2523, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30306509

RESUMEN

Snakehead murrel, Channa striatus is an economically important aquatic species in Asia and are widely cultured and captured because of its nutritious and medicinal values. Their growth is predominantly affected by epizootic ulcerative syndrome (EUS) which is primarily caused by an oomycete fungus, Aphanomyces invadans. However, the molecular mechanism of immune response in murrel against this infection is still not clear. In this study, transcriptome technique was used to understand the molecular changes involved in C. striatus during A. invadans infection. RNA from the control (CF) and infected fish (IF) groups were sequenced using Illumina Hi-seq sequencing technology. For control group, 28,952,608 clean reads were generated and de novo assembly was performed to produce 60,753 contigs. For fungus infected group, 25,470,920 clean reads were obtained and assembled to produce 58,654 contigs. Differential gene expression analysis revealed that a total of 146 genes were up-regulated and 486 genes were down regulated. Most of the differentially expressed genes were involved in innate immune mechanism such as pathogen recognition, signalling and antimicrobial mechanisms. Interestingly, few adaptive immune genes, especially immunoglobulins were also significantly up regulated during fungal infection. Also, the results were validated by qRT-PCR analysis. These results indicated the involvement of various immune genes involved in both innate and adaptive immune mechanism during fungal infection in C. striatus which provide new insights into murrel immune mechanisms against A. invadans.


Asunto(s)
Aphanomyces/genética , Perfilación de la Expresión Génica/métodos , Perciformes/genética , Animales , Aphanomyces/patogenicidad , Asia , Secuencia de Bases , Enfermedades de los Peces/genética , Proteínas de Peces/genética , Peces/genética , ARN Mensajero/genética , Transcriptoma/genética
15.
BMC Genomics ; 18(1): 401, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28535746

RESUMEN

BACKGROUND: Watercress (Nasturtium officinale R. Br.) is an aquatic herb species that is a rich source of secondary metabolites such as glucosinolates. Among these glucosinolates, watercress contains high amounts of gluconasturtiin (2-phenethyl glucosinolate) and its hydrolysis product, 2-phennethyl isothiocyanate, which plays a role in suppressing tumor growth. However, the use of N. officinale as a source of herbal medicines is currently limited due to insufficient genomic and physiological information. RESULTS: To acquire precise information on glucosinolate biosynthesis in N. officinale, we performed a comprehensive analysis of the transcriptome and metabolome of different organs of N. officinale. Transcriptome analysis of N. officinale seedlings yielded 69,570,892 raw reads. These reads were assembled into 69,635 transcripts, 64,876 of which were annotated to transcripts in public databases. On the basis of the functional annotation of N. officinale, we identified 33 candidate genes encoding enzymes related to glucosinolate biosynthetic pathways and analyzed the expression of these genes in the leaves, stems, roots, flowers, and seeds of N. officinale. The expression of NoMYB28 and NoMYB29, the main regulators of aliphatic glucosinolate biosynthesis, was highest in the stems, whereas the key regulators of indolic glucosinolate biosynthesis, such as NoDof1.1, NoMYB34, NoMYB51, and NoMYB122, were strongly expressed in the roots. Most glucosinolate biosynthetic genes were highly expressed in the flowers. HPLC analysis enabled us to detect eight glucosinolates in the different organs of N. officinale. Among these glucosinolates, the level of gluconasturtiin was considerably higher than any other glucosinolate in individual organs, and the amount of total glucosinolates was highest in the flower. CONCLUSIONS: This study has enhanced our understanding of functional genomics of N. officinale, including the glucosinolate biosynthetic pathways of this plant. Ultimately, our data will be helpful for further research on watercress bio-engineering and better strategies for exploiting its anti-carcinogenic properties.


Asunto(s)
Perfilación de la Expresión Génica , Glucosinolatos/metabolismo , Nasturtium/genética , Nasturtium/metabolismo , Anotación de Secuencia Molecular , Análisis de Secuencia de ARN
16.
Fish Shellfish Immunol ; 60: 129-140, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27876624

RESUMEN

Heat shock proteins (HSPs) are immunogenic, ubiquitous class of molecular chaperones, which are induced in response to various environmental and microbial stressful conditions. It plays a vital role in maintaining cellular protein homeostasis in eukaryotic cells. In this study, we described a comprehensive comparative data by bioinformatics approach on three different full length cDNA sequences of HSP family at molecular level. The cDNA sequences of three HSPs were identified from constructed cDNA library of Channa striatus and named as CsCPN60, CsHSP60 and CsHSP70. We have conducted various physicochemical study, which showed that CsHSP70 (666 amino acid) possessed a larger polypeptides followed by CsCPN60 (575) and CsCPN60 (542). Three dimensional structural analysis of these HSPs showed maximum residues in α-helices and least in ß-sheets; also CsHSP60 lacks ß-sheet and formed helix-turn-helix structure. Further analysis indicated that each HSP carried distinct domains and gene specific signature motif, which showed that each HSP are structurally diverse. Homology and phylogenetic study showed that the sequences taken for analysis shared maximum identity with fish HSP family. Tissue specific mRNA expression analysis revealed that all the HSPs showed maximum expression in one of the major immune organ such as CsCPN60 in kidney, CsHSP60 in spleen and CsHSP70 in head kidney. To understand the function of HSPs in murrel immune system, the elevation in mRNA expression level was analyzed against microbial oxidative stressors such as fungal (Aphanomyces invadans) and bacterial (Aeromonas hydrophila). It is interesting to note that all the HSP showed a different expression pattern and reached maximum up-regulation at 48 h post-infection (p.i) during fungal stress, whereas in bacterial stress only CsCPN60 showed maximum up-regulation at 48 h p.i, but CsHSP60 and CsHSP70 showed maximum up-regulation at 24 h p.i. The differential expression pattern showed that each HSP is diverse in function. Overall, the elevation in expression levels showed that HSPs might have potential involvement in murrel immune protection thus, protecting the organism against various external stimuli including environmental and microbial stress.


Asunto(s)
Enfermedades de los Peces/genética , Proteínas de Peces/genética , Regulación de la Expresión Génica , Infecciones por Bacterias Gramnegativas/veterinaria , Proteínas de Choque Térmico/genética , Infecciones/veterinaria , Perciformes , Aeromonas hydrophila/fisiología , Secuencia de Aminoácidos , Animales , Aphanomyces/fisiología , ADN Complementario/genética , ADN Complementario/metabolismo , Enfermedades de los Peces/inmunología , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Infecciones por Bacterias Gramnegativas/genética , Infecciones por Bacterias Gramnegativas/inmunología , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Infecciones/genética , Infecciones/inmunología , Filogenia , Conformación Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia/veterinaria
17.
J Sci Food Agric ; 97(15): 5287-5295, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28480570

RESUMEN

BACKGROUND: Fermented foods produced using dates are used in Gulf countries as beneficial and healthful foods. The beneficial microbial flora in fermented dates contributes to maintaining the nutritional properties of dates by preventing the growth of spoilage fungi. Here, we examined the antifungal, probiotic, and antioxidant properties of the novel Lactobacillus strain D-3 isolated from fermented dates. RESULTS: Analyzing the morphological, physiological, and biochemical characteristics of this strain demonstrated that it was similar to Lactobacillus species, and molecular-level amplification of the 16S rRNA gene showed that it belonged to Lactobacillus paraplantarum. Under shake flask cultivation using date juice, the strain produced significant amounts of ethanol and lactic, succinic, and acetic acids. Purification of benzoic acid extracted from the extracellular fermentation medium was confirmed by nuclear magnetic resonance, and infrared and mass spectral data revealed minimum inhibitory concentration values of 10, 20, 10, 5, and 10 mg mL-1 for Aspergillus fumigates, Curvularia lunata, Fusarium oxysporum, Gibberella moniliformis, and Penicillium chrysogenum, respectively. The strain showed several advantages, including the ability to survive under conditions similar to the gastrointestinal tract (low pH, bile salts, and antimicrobial susceptibility) and high levels of extracellular enzyme activities. The strain's growth patterns under various concentrations of H2 O2 and its scavenging properties towards hydroxyl radical (64.85%) and DPPH (84.97%) were also interesting properties. CONCLUSION: The antifungal, probiotic, and antioxidant properties of L. paraplantarum D3 may provide health benefits to consumers. © 2017 Society of Chemical Industry.


Asunto(s)
Antibiosis , Lactobacillus plantarum/aislamiento & purificación , Lactobacillus plantarum/fisiología , Phoeniceae/microbiología , Probióticos/química , Fermentación , Frutas/microbiología , Jugos de Frutas y Vegetales/análisis , Jugos de Frutas y Vegetales/microbiología , Hongos/crecimiento & desarrollo , Hongos/fisiología , Lactobacillus plantarum/genética , Probióticos/aislamiento & purificación , Arabia Saudita
18.
BMC Genomics ; 17: 303, 2016 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-27107812

RESUMEN

BACKGROUND: Valeriana fauriei is commonly used in the treatment of cardiovascular diseases in many countries. Several constituents with various pharmacological properties are present in the roots of Valeriana species. Although many researches on V. fauriei have been done since a long time, further studies in the discipline make a limit due to inadequate genomic information. Hence, Illumina HiSeq 2500 system was conducted to obtain the transcriptome data from shoot and root of V. fauriei. RESULTS: A total of 97,595 unigenes were noticed from 346,771,454 raw reads after preprocessing and assembly. Of these, 47,760 unigens were annotated with Uniprot BLAST hits and mapped to COG, GO and KEGG pathway. Also, 70,013 and 88,827 transcripts were expressed in root and shoot of V. fauriei, respectively. Among the secondary metabolite biosynthesis, terpenoid backbone and phenylpropanoid biosynthesis were large groups, where transcripts was involved. To characterize the molecular basis of terpenoid, carotenoid, and phenylpropanoid biosynthesis, the levels of transcription were determined by qRT-PCR. Also, secondary metabolites content were measured using GC/MS and HPLC analysis for that gene expression correlated with its accumulation respectively between shoot and root of V. fauriei. CONCLUSIONS: We have identified the transcriptome using Illumina HiSeq system in shoot and root of V. fauriei. Also, we have demonstrated gene expressions associated with secondary metabolism such as terpenoid, carotenoid, and phenylpropanoid.


Asunto(s)
Metaboloma , Transcriptoma , Valeriana/genética , Carotenoides/biosíntesis , Cromatografía Líquida de Alta Presión , Cromatografía de Gases y Espectrometría de Masas , Secuenciación de Nucleótidos de Alto Rendimiento , Raíces de Plantas/genética , Brotes de la Planta/genética , ARN de Planta/genética , Metabolismo Secundario/genética , Análisis de Secuencia de ARN , Terpenos/metabolismo
19.
Proteome Sci ; 14(1): 11, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27601941

RESUMEN

BACKGROUND: Metal-organic frameworks (MOFs - MIL-101) are the most exciting, high profiled developments in nanotechnology in the last ten years, and it attracted considerable attention owing to their uniform nanoporosity, large surface area, outer-surface modification and in-pore functionality for tailoring the chemical properties of the material for anchoring specific guest moieties. MOF's have been particularly highlighted for their excellent gas storage and separation properties. Recently biomolecules-based MOF's were used as nanoencapsulators for antitumor and antiretroviral controlled drug delivery studies. However, usage of MOF material for removal of ionic detergent-SDS from biological samples has not been reported to date. Here, first time we demonstrate its novel applications in biological sample preparation for mass spectrometry analysis. METHODS: SDS removal using MIL-101 was assessed for proteomic analysis by mass spectrometry. We analysed removal of SDS from 0.5 % SDS solution alone, BSA mixture and HMEC cells lysate protein mixture. The removal of SDS by MIL-101 was confirmed by MALDI-TOF-MS and LC-MS techniques. RESULTS: In an initial demonstration, SDS has removed effectively from 0.5 % SDS solution by MIL-101via its binding attraction with SDS. Further, the experiment also confirmed that MIL-101 strongly removed the SDS from BSA and cell lysate mixtures. CONCLUSIONS: These results suggest that SDS removal by the MIL-101 method is a practical, simple and broad applicable in proteomic sample processing for MALDI-TOF-MS and LC-MS analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA