Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Chem Soc Rev ; 49(13): 4496-4526, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32495754

RESUMEN

Solar cells based on organo-metal halide perovskites have gained unprecedented research interest over the last few years due to their low-cost solution processability, high power conversion efficiency, which has recently reached a certified value of 25.2%, and abundance of raw materials. Nevertheless, the best efficiencies remain below the Shockley-Queisser theoretical limit of 32.5% due to several losses arising from either defect traps present in the bulk of the perovskite absorber or at the device heterointerfaces. While bulk defects are detrimental for the device performance by mainly limiting the open circuit voltage, interfacial layers are also crucial. They dictate the charge transfer/transport from the perovskite layer to the collecting electrodes, hence influencing the device photocurrent, but also act as protective barriers against oxygen and moisture penetration. Molecular materials and additives are widely used to improve the bulk properties of perovskite absorbers through the formation of high-quality perovskite films with superior optoelectronic properties, and improved crystallinity, and also of electronically clean interfaces with minimum losses during charge transfer/transport. In this review, we analyze the predominant pathways that contribute to voltage and current losses due to poor interfaces and also due to non-radiative recombination losses arising from inferior perovskite morphology and its inherent polycrystalline and highly defective nature. We then discuss strategies for achieving interfacial organic and inorganic molecular materials for application as electron and hole transport layers in perovskite solar cells with ideal energy levels, high charge mobilities and improved thermal, photo, and structural stability. Moreover, the prerequisites for molecular additives to achieve dimensionality engineering, defect passivation, molecular cross-linking, interfacial energy alignment and electronic doping are thoroughly discussed. Finally, we examine prospects for future research directions and commercialization.

2.
Biogerontology ; 21(6): 695-708, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32533368

RESUMEN

Senescent fibroblasts are characterized by their inability to proliferate and by a pro-inflammatory and catabolic secretory phenotype, which contributes to age-related pathologies. Furthermore, senescent fibroblasts when cultured under classical conditions in vitro are also characterized by striking morphological changes, i.e. they lose the youthful spindle-like appearance and become enlarged and flattened, while their nuclei from elliptical become oversized and highly lobulated. Knowing the strong relation between cell shape and function, we cultured human senescent fibroblasts on photolithographed Si/poly(vinyl alcohol) (PVA) micro-patterned surfaces in order to restore the classical spindle-like geometry and subsequently to investigate whether the changes in senescent cells' morphology are the cause of their functional alterations. Interestingly, under these conditions senescent cells' nuclei do not revert to the classical elliptical phenotype. Furthermore, enforced spindle-shaped senescent cells retained their deteriorated proliferative ability, and maintained the increased gene expression of the cell cycle inhibitors p16Ink4a and p21Waf1. In addition, Si/PVA-patterned-grown senescent fibroblasts preserved their senescence-associated phenotype, as evidenced by the overexpression of inflammatory and catabolic genes such as IL6, IL8, ICAM1 and MMP1 and MMP9 respectively, which was further manifested by an intense downregulation of fibroblasts' most abundant extracellular matrix component Col1A, compared to their young counterparts. These data indicate that the restoration of the spindle-like shape in senescent human fibroblasts is not able to directly alter major functional traits and restore the youthful phenotype.


Asunto(s)
Forma de la Célula , Senescencia Celular , Fibroblastos , Células Cultivadas , Colágeno Tipo I , Cadena alfa 1 del Colágeno Tipo I , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Matriz Extracelular , Fibroblastos/citología , Humanos , Piel
3.
Phys Chem Chem Phys ; 21(1): 427-437, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30534673

RESUMEN

The investigation of conditions allowing multi-electron reduction and reoxidation of polyoxometalate (POM) films onto solid substrates is considered an issue of critical importance for their successful incorporation in electronic devices, different types of sensors and catalytic systems. In the present paper, the rich multi-electron redox chemistry of films of Wells-Dawson ammonium salts, namely (NH4)6P2Mo18O62 and (NH4)6P2W18O62, on top of metallic (Al), semiconducting (ITO) and dielectric (SiO2) substrates under ambient conditions is investigated. The respective Keggin heteropolyacids, H3PMo12O40 and H3PW12O40, are also investigated for comparison. On Al substrates, the Wells-Dawson ammonium salts are found to be significantly more reduced (4-6e-) compared to the respective Keggin heteropolyacids (∼2e-), in accordance with their deeper lying lowest unoccupied molecular orbital (LUMO) level. Subsequent thermal treatment in air results in reoxidation of the initially highly reduced POM films. Similar behavior is found on ITO substrates, but in initially less reduced (2-4e-) Wells-Dawson POM films. On the other hand, on SiO2 substrates, the thermal reduction of (NH4)6P2Mo18O62 film is observed and attributed to the thermal oxidation of ammonium counterions by [P2Mo18O62]6- anions. Overall, the multi-electron reduction of Wells-Dawson ammonium salts onto metallic and semiconducting substrates (Al, ITO) is determined by the relative position of the LUMO level of POMs in relation to the Fermi level of the substrate (i.e. substrate work function) and affected in a synergistic way by the presence of ammonium counterions. In contrast, on dielectric substrates (SiO2) the reduction of Wells-Dawson POMs ((NH4)6P2Mo18O62) is attributed only to the oxidation of ammonium counterions.

4.
J Am Chem Soc ; 137(21): 6844-56, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-25951374

RESUMEN

The present study is aimed at investigating the solid state reduction of a representative series of Keggin and Dawson polyoxometalate (POM) films in contact with a metallic (aluminum) electrode and at introducing them as highly efficient cathode interlayers in organic optoelectronics. We show that, upon reduction, up to four electrons are transferred from the metallic electrode to the POM clusters of the Keggin series dependent on addenda substitution, whereas a six electron reduction was observed in the case of the Dawson type clusters. The high degree of their reduction by Al was found to be of vital importance in obtaining effective electron transport through the cathode interface. A large improvement in the operational characteristics of organic light emitting devices and organic photovoltaics based on a wide range of different organic semiconducting materials and incorporating reduced POM/Al cathode interfaces was achieved as a result of the large decrease of the electron injection/extraction barrier, the enhanced electron transport and the reduced recombination losses in our reduced POM modified devices.

5.
Macromol Biosci ; 23(1): e2200301, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36189866

RESUMEN

Surfaces for guided cell adhesion and growth are indispensable in several diagnostic and therapeutic applications. Towards this direction, four diblock copolymers comprising polyethylene glycol (PEG) and poly(2-tetrahydropyranyl methacrylate) (PTHPMA) are synthesized employing PEG macroinitiators of different chain lengths. The copolymer with a 5000 Da PEG block and a PEG-PTHPMA comonomers weight ratio of 43-57 provides a film with the highest stability in the culture medium and the strongest cell repellent properties. This copolymer is used to develop a positive photolithographic material and create stripe patterns onto silicon substrates. The highest selectivity regarding smooth muscle cell adhesion and growth and the highest fidelity of adhered cells for up to 3 days in culture is achieved for stripe patterns with widths between 25 and 27.5 µm. Smooth muscle cells cultured on such patterned substrates exhibit a decrease in their proliferation rate and nucleus area and an increase in their major axis length, compared to the cells cultured onto non-patterned substrates. These alterations are indicative of the adoption of a contractile rather than a synthetic phenotype of the smooth muscle cells grown onto the patterned substrates and demonstrate the potential of the novel photolithographic material and patterning method for guided cell adhesion and growth.


Asunto(s)
Polietilenglicoles , Polímeros , Polietilenglicoles/química , Adhesión Celular/fisiología , Polímeros/farmacología , Polímeros/química
6.
Nanomaterials (Basel) ; 13(20)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37887950

RESUMEN

Two gallium porphyrins, a tetraphenyl GaCl porphyrin, termed as (TPP)GaCl, and an octaethylporphyrin GaCl porphyrin, termed as (OEP)GaCl, were synthesized to use as an electron cascade in ternary organic bulk heterojunction films. A perfect matching of both gallium porphyrins' energy levels with that of poly(3-hexylthiophene-2,5-diyl) (P3HT) or poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) polymer donor and the 6,6-phenyl C71 butyric acid methyl ester (PCBM) fullerene acceptor, forming an efficient cascade system that could facilitate electron transfer between donor and acceptor, was demonstrated. Therefore, ternary organic solar cells (OSCs) using the two porphyrins in various concentrations were fabricated where a performance enhancement was obtained. In particular, (TPP)GaCl-based ternary OSCs of low concentration (1:0.05 vv%) exhibited a ~17% increase in the power conversion efficiency (PCE) compared with the binary device due to improved exciton dissociation, electron transport and reduced recombination. On the other hand, ternary OSCs with a high concentration of (TPP)GaCl (1:0.1 vv%) and (OEP)GaCl (1:0.05 and 1:0.1 vv%) showed the poorest efficiencies due to very rough nanomorphology and suppressed crystallinity of ternary films when the GaCl porphyrin was introduced to the blend, as revealed from X-ray diffraction (XRD) and atomic force microscopy (AFM). The best performing devices also exhibited improved photostability when exposed to sunlight illumination for a period of 8 h than the binary OSCs, attributed to the suppressed photodegradation of the ternary (TPP)GaCl 1:0.05-based photoactive film.

7.
J Am Chem Soc ; 134(39): 16178-87, 2012 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-22938058

RESUMEN

Molybdenum oxide is used as a low-resistance anode interfacial layer in applications such as organic light emitting diodes and organic photovoltaics. However, little is known about the correlation between its stoichiometry and electronic properties, such as work function and occupied gap states. In addition, despite the fact that the knowledge of the exact oxide stoichiometry is of paramount importance, few studies have appeared in the literature discussing how this stoichiometry can be controlled to permit the desirable modification of the oxide's electronic structure. This work aims to investigate the beneficial role of hydrogenation (the incorporation of hydrogen within the oxide lattice) versus oxygen vacancy formation in tuning the electronic structure of molybdenum oxides while maintaining their high work function. A large improvement in the operational characteristics of both polymer light emitting devices and bulk heterojunction solar cells incorporating hydrogenated Mo oxides as hole injection/extraction layers was achieved as a result of favorable energy level alignment at the metal oxide/organic interface and enhanced charge transport through the formation of a large density of gap states near the Fermi level.

8.
Macromol Rapid Commun ; 33(3): 183-98, 2012 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-22162153

RESUMEN

Photodegradable polymers constitute an emerging class of materials that finds numerous applications in biotechnology, biomedicine, and nanoscience. This article highlights some of the emerging applications of photodegradable polymers in the form of homopolymers, particles and self-assembled constructs in solution, hydrogels for tissue engineering, and photolabile polymers for biopatterning applications. Novel photochemistries have been combined with controlled polymerization methods, which result in well-defined photodegradable materials that exhibit light mediated and often controlled fragmentation processes.


Asunto(s)
Biotecnología , Hidrogeles/química , Luz , Nanopartículas/química , Fotólisis , Polímeros/química , Humanos , Óptica y Fotónica , Polimerizacion/efectos de la radiación , Ingeniería de Tejidos
9.
Cell Rep Phys Sci ; 3(9): 101019, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36259071

RESUMEN

Here, we report photonic nanostructures replicated from the adaxial epidermis of flower petals onto light-polymerized coatings using low-cost nanoimprint lithography at ambient temperature. These multifunctional nanocoatings are applied to confer enhanced light trapping, water repellence, and UV light and environmental moisture protection features in perovskite solar cells. The former feature helps attain a maximum power conversion efficiency of 24.61% (21.01% for the reference cell) without any additional device optimization. Added to these merits, the nanocoatings also enable stable operation under AM 1.5G and UV light continuous illumination or in real-world conditions. Our engineering approach provides a simple way to produce multifunctional nanocoatings optimized by nature's wisdom.

10.
Phys Chem Chem Phys ; 13(48): 21273-81, 2011 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-22025129

RESUMEN

The absorption and fluorescence spectra of the green emitter DMA-DPH {1-[4-(dimethylamino)phenyl]-6-phenylhexa-1,3,5-triene} and its protonated blue-emitter form have been studied theoretically through time-dependent density functional theory (TD-DFT) and resolution-of-identity 2nd order perturbative coupled cluster (RI-CC2) calculations with basis sets up to augmented triple-ζ quality, in the gas phase and in solvents of different polarity. These systems dispersed in a polymer matrix are of interest for applications in organic light emitting diode devices (OLEDs). Calculations show that the observed absorption and emission spectra correspond to transitions between the S(0) and S(1) states, in both systems. The nature and characteristics of these transitions are discussed. Excellent agreement with experimental data is obtained, both for absorption and emission, provided that the state-specific polarized continuum model (SS-PCM) method is employed for the inclusion of the solvent.

11.
Nanomaterials (Basel) ; 10(8)2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32823865

RESUMEN

The need for decreasing semiconductor device critical dimensions at feature sizes below the 20 nm resolution limit has led the semiconductor industry to adopt extreme ultra violet (EUV) lithography with exposure at 13.5 nm as the main next generation lithographic technology. The broad consensus on this direction has triggered a dramatic increase of interest on resist materials of high sensitivity especially designed for use in the EUV spectral region in order to meet the strict requirements needed for overcoming the source brightness issues and securing the cost efficiency of the technology. To this direction both fundamental studies on the radiation induced chemistry in this spectral area and a plethora of new ideas targeting at the design of new highly sensitive and top performing resists have been proposed. Besides the traditional areas of acid-catalyzed chemically amplified resists and the resists based on polymer backbone breaking new unconventional ideas have been proposed based on the insertion of metal compounds or compounds of other highly absorbing at EUV atoms in the resist formulations. These last developments are reviewed here. Since the effort targets to a new understanding of electron-induced chemical reactions that dominate the resist performance in this region these last developments may lead to unprecedented changes in lithographic technology but can also strongly affect other scientific areas where electron-induced chemistry plays a critical role.

12.
ACS Appl Mater Interfaces ; 12(19): 21961-21973, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32364365

RESUMEN

Organic solar cells based on nonfullerene acceptors have recently witnessed a significant rise in their power conversion efficiency values. However, they still suffer from severe instability issues, especially in an inverted device architecture based on the zinc oxide bottom electron transport layers. In this work, we insert a pyrene-bodipy donor-acceptor dye as a thin interlayer at the photoactive layer/zinc oxide interface to suppress the degradation reaction of the nonfullerene acceptor caused by the photocatalytic activity of zinc oxide. In particular, the pyrene-bodipy-based interlayer inhibits the direct contact between the nonfullerene acceptor and zinc oxide hence preventing the decomposition of the former by zinc oxide under illumination with UV light. As a result, the device photostability was significantly improved. The π-π interaction between the nonfullerene acceptor and the bodipy part of the interlayer facilitates charge transfer from the nonfullerene acceptor toward pyrene, which is followed by intramolecular charge transfer to bodipy part and then to zinc oxide. The bodipy-pyrene modified zinc oxide also increased the degree of crystallization of the photoactive blend and the face-on stacking of the polymer donor molecules within the blend hence contributing to both enhanced charge transport and increased absorption of the incident light. Furthermore, it decreased the surface work function as well as surface energy of the zinc oxide film all impacting in improved power conversion efficiency values of the fabricated cells with champion devices reaching values up to 9.86 and 11.80% for the fullerene and nonfullerene-based devices, respectively.

13.
ACS Appl Mater Interfaces ; 12(1): 1120-1131, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31829007

RESUMEN

Photovoltaic devices based on organic semiconductors and organo-metal halide perovskites have not yet reached the theoretically predicted power conversion efficiencies while they still exhibit poor environmental stability. Interfacial engineering using suitable materials has been recognized as an attractive approach to tackle the above issues. We introduce here a zinc porphyrin-triazine-bodipy donor-π bridge-acceptor dye as a universal electron transfer mediator in both organic and perovskite solar cells. Thanks to its "push-pull" character, this dye enhances electron transfer from the absorber layer toward the electron-selective contact, thus improving the device's photocurrent and efficiency. The direct result is more than 10% average power conversion efficiency enhancement in both fullerene-based (from 8.65 to 9.80%) and non-fullerene-based (from 7.71 to 8.73%) organic solar cells as well as in perovskite ones (from 14.56 to 15.67%), proving the universality of our approach. Concurrently, by forming a hydrophobic network on the surface of metal oxide substrates, it improves the nanomorphology of the photoactive overlayer and contributes to efficiency stabilization. The fabricated devices of both kinds preserved more than 85% of their efficiency upon exposure to ambient conditions for more than 600 h without any encapsulation.

14.
Inorg Chem ; 48(11): 4896-907, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19405542

RESUMEN

The capability of ammonium 18-molybdodiphosphate, (NH(4))(6)P(2)Mo(18)O(62) (Mo(18)(6-)), and ammonium 18-tungstodiphosphate, (NH(4))(6)P(2)W(18)O(62) (W(18)(6-)), to photochemically generate acid within films of a polymer with hydroxylic functional groups (namely, within poly(2-hydroxyethyl methacrylate) (PHEMA) films) is demonstrated. Upon UV irradiation, both 2:18 polyoxometalates (POMs) investigated are reduced with concomitant oxidation of PHEMA and generation of acid, which subsequently catalyzes the cross-linking of PHEMA. The photoacid generation is mainly evidenced by monitoring the protonation of an appropriate acid indicator (4-dimethylamino-4'-nitrostilbene) with UV spectroscopy and by photolithographic imaging experiments. By comparing the efficiency of both POMs to induce acid-catalyzed cross-linking of PHEMA under similar conditions, the W(18)(6-) ion is found to be more efficient in photoacid generation than the Mo(18)(6-) ion. Imaging of the POM-containing PHEMA films through UV photolithographic processing is demonstrated. In that process, both POMs can be entirely leached during the development step by using pure water as a developer, resulting in patterned PHEMA films. This characteristic renders the investigated POMs attractive materials for applications, especially in the area of biomaterials, where removal of the photoacid generator from the film at the end of the process is desirable.

15.
Colloids Surf B Biointerfaces ; 178: 208-213, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30856590

RESUMEN

The patterning of organic materials on solid substrate surfaces has been demonstrated by several methods, such as photolithography, soft lithography, imprint lithography and ink-jet printing. Fluorinated polymers and solvents provide attractive material systems to develop new patterning approaches, as they are chemically orthogonal to non-fluorinated organic molecules, allowing their efficient incorporation in different devices and systems. Moreover, fluorinated polymers are soluble in hydrofluoroether solvents, benign to biomolecules, and can be properly engineered to enable efficient photolithographic patterning. In this work, we report the development of a new photolithographic process for patterning biomolecules on any kind of surfaces either by physical adsorption or covalent bonding. The photoresist is based on a fluorinated material and hydrofluoroether solvents that have minimum interactions with biomolecules and thus they can be characterized as orthogonal to the biomolecules (bio-orthogonal). In both cases, the creation of patterns with dimensions down to 2 µm was achieved. The implementation of the developed photolithographic procedure for the creation of a multi-protein microarray is demonstrated.


Asunto(s)
Nanotecnología/métodos , Polímeros/química , Impresión/métodos , Análisis por Matrices de Proteínas , Solventes/química
16.
Biomed Mater ; 14(1): 014101, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30362459

RESUMEN

In this work, silicon substrates with poly(vinyl alcohol) (PVA) patterns created by a simple, low-cost and high-fidelity photolithographic procedure were evaluated with respect to cell adhesion and alignment, viability, metabolic activity, proliferation and cell cycle progression using the human glioblastoma cell-line U87MG and human skin fibroblasts. In addition, rat adrenal pheochromocytoma cells (PC-12) were employed to evaluate a modified photolithographic protocol appropriate for adhesion of cells requiring extracellular matrix components to adhere on the surface and to demonstrate that the proposed patterned substrates could provide unhindered cell differentiation. Regarding U87MG cells and skin fibroblasts, it was found that as the stripes width increased from 10 to 50 µm, the percentage of cells attached to Si versus the total area (Si + PVA) increased from 78% and 72% to 98.5% and 94.5% (p < 0.05), for U87MG cells and skin fibroblasts, respectively, with optimum cell alignment (≥95% of adherent cells with fidelity between 0.90 and 1.0; p < 0.05) for stripes width ranging between 20 and 22.5 µm. Concerning the viability, metabolic activity and proliferation of adherent cells, no statistically significant differences were observed compared to cells cultured onto non-patterned surfaces. Regarding PC-12 cells, a modification of the patterning procedure was followed involving coating of the substrate with type IV collagen prior to the photolithographic procedure, since they could not adhere on plain Si substrates. It was found that PC-12 cells adhere selectively (>95%) to collagen-coated Si stripes when the pattern width was equal to or wider than 10 µm. Following treatment with nerve growth factor, approximately 80% (p < 0.05) of the adherent cells differentiated to neuron-like cells extending neurites exclusively within the pattern. Given that the proposed patterning procedure allows highly selective cell adhesion without affecting cell proliferation, metabolic activity, and differentiation it could serve as a useful tool in various fields including tissue engineering, cell-based sensors and analytical microsystems.


Asunto(s)
Adhesión Celular , Técnicas de Cultivo de Célula , Alcohol Polivinílico/química , Silicio/química , Animales , Ciclo Celular , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Colágeno/química , Medios de Cultivo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Humanos , Ensayo de Materiales , Neuritas/metabolismo , Células PC12 , Ratas , Piel/citología , Piel/efectos de los fármacos , Propiedades de Superficie , Ingeniería de Tejidos/métodos
17.
ACS Appl Mater Interfaces ; 10(24): 20728-20739, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29785853

RESUMEN

In the present work, we effectively modify the TiO2 electron transport layer of organic solar cells with an inverted architecture using appropriately engineered porphyrin molecules. The results show that the optimized porphyrin modifier bearing two carboxylic acids as the anchoring groups and a triazine electron-withdrawing spacer significantly reduces the work function of TiO2, thereby reducing the electron extraction barrier. Moreover, the lower surface energy of the porphyrin-modified substrate results in better physical compatibility between the latter and the photoactive blend. Upon employing porphyrin-modified TiO2 electron transport layers in PTB7:PC71BM-based organic solar cells we obtained an improved average power conversion efficiency up to 8.73%. Importantly, porphyrin modification significantly increased the lifetime of the devices, which retained 80% of their initial efficiency after 500 h of storage in the dark. Because of its simplicity and efficacy, this approach should give tantalizing glimpses and generate an impact into the potential of porphyrins to facilitate electron transfer in organic solar cells and related devices.

18.
ACS Omega ; 3(8): 10008-10018, 2018 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-31459129

RESUMEN

Here, we use a simple and effective method to accomplish energy level alignment and thus electron injection barrier control in organic light emitting diodes (OLEDs) with a conventional architecture based on a green emissive copolymer. In particular, a series of functionalized zinc porphyrin compounds bearing π-delocalized triazine electron withdrawing spacers for efficient intramolecular electron transfer and different terminal groups such as glycine moieties in their peripheral substitutes are employed as thin interlayers at the emissive layer/Al (cathode) interface to realize efficient electron injection/transport. The effects of spatial (i.e., assembly) configuration, molecular dipole moment and type of peripheral group termination on the optical properties and energy level tuning are investigated by steady-state and time-resolved photoluminescence spectroscopy in F8BT/porphyrin films, by photovoltage measurements in OLED devices and by surface work function measurements in Al electrodes modified with the functionalized zinc porphyrins. The performance of OLEDs is significantly improved upon using the functionalized porphyrin interlayers with the recorded luminance of the devices to reach values 1 order of magnitude higher than that of the reference diode without any electron injection/transport interlayer.

19.
Biosens Bioelectron ; 22(9-10): 1994-2002, 2007 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-17027250

RESUMEN

The last years, there is a steadily growing demand for methods and materials appropriate to create patterns of biomolecules for bioanalytical applications. Here, a photolithographic method for patterning biomolecules onto a silicon surface coated with a polymeric layer of high protein binding capacity is presented. The patterning process does not affect the polymeric film and the activity of the immobilized onto the surface biomolecules. Therefore, it permits sequential immobilization of different biomolecules on spatially distinct areas on the same solid support. The polymeric layer is based on a commercially available photoresist (AZ5214) that is cured at high temperature in order to provide a stable substrate for creation of protein microarrays by the developed photolithographic process. The photolithographic material consists of a (meth)acrylate copolymer and a sulfonium salt as a photoacid generator, and it is lithographically processed by thermal treatment at temperatures

Asunto(s)
Ácidos Polimetacrílicos , Análisis por Matrices de Proteínas/instrumentación , Silicio , Animales , Bovinos , Conejos
20.
Sci Rep ; 7(1): 17839, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29259244

RESUMEN

TiO2 has high chemical stability, strong catalytic activity and is an electron transport material in organic solar cells. However, the presence of trap states near the band edges of TiO2 arising from defects at grain boundaries significantly affects the efficiency of organic solar cells. To become an efficient electron transport material for organic photovoltaics and related devices, such as perovskite solar cells and photocatalytic devices, it is important to tailor its band edges via doping. Nitrogen p-type doping has attracted considerable attention in enhancing the photocatalytic efficiency of TiO2 under visible light irradiation while hydrogen n-type doping increases its electron conductivity. DFT calculations in TiO2 provide evidence that nitrogen and hydrogen can be incorporated in interstitial sites and possibly form NiHi, NiHO and NTiHi defects. The experimental results indicate that NiHi defects are most likely formed and these defects do not introduce deep level states. Furthermore, we show that the efficiency of P3HT:IC60BA-based organic photovoltaic devices is enhanced when using hydrogen-doping and nitrogen/hydrogen codoping of TiO2, both boosting the material n-type conductivity, with maximum power conversion efficiency reaching values of 6.51% and 6.58%, respectively, which are much higher than those of the cells with the as-deposited (4.87%) and nitrogen-doped TiO2 (4.46%).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA