Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 252(Pt 2): 118914, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38609071

RESUMEN

CONTEXT: Public interest for citizen science (CS) in environmental health is growing. The goals of environmental health research projects are diverse, as are the methods used to reach these goals. Opportunities for greater implication of the civil society and related challenges differ at each step of such projects. These methodological aspects need to be widely shared and understood by all stakeholders. The LILAS initiative (acronym for "application of citizen science approaches such as LIving LAbS to research on environmental exposures and chronic risks") aimed to 1) favor a mutual understanding of the main issues and research methods in environmental health, of their stakes for different actors, but also of the requirements, strengths and limitations of these methods and to 2) identify expected benefits and points of attention related to stronger degrees of participation as part of environmental health research projects. METHODS: The LILAS initiative gathered institutional researchers, academics and civil society representatives interested in environmental exposures. Five meetings allowed to collectively identify different types of environmental health research studies and reflect about the benefits, limitations, and methodological issues related to the introduction of growing citizen participation as part of such studies. An analytic table matrix summarizing these aspects was co-created and filled by participants, as a tool devoted to help stakeholders with the definition of future CS research projects in environmental health. RESULTS: For different fields of research (e.g.: studies for assessment of environmental exposures, interventions on these exposures, quantitative risk assessment, epidemiological studies), the matrix lists expected benefits for various stakeholders, the fundamental principles of research methods and related practical constraints, but also advantages and limitations related to the use of CS or conventional research approaches. CONCLUSION: The LILAS initiative allowed to develop a tool which provides consolidated grounds for the co-creation of research projects on environmental exposures involving CS.


Asunto(s)
Ciencia Ciudadana , Salud Ambiental , Salud Ambiental/métodos , Humanos , Exposición a Riesgos Ambientales , Proyectos de Investigación
2.
BMC Biol ; 21(1): 164, 2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37525144

RESUMEN

BACKGROUND: Individual functional modifications shape the ability of wildlife populations to cope with anthropogenic environmental changes. But instead of adaptive response, human-altered environments can generate a succession of deleterious functional changes leading to the extinction of the population. To study how persistent anthropogenic changes impacted local species' population status, we characterised population structure, genetic diversity and individual response of gene expression in the tree frog Hyla orientalis along a gradient of radioactive contamination around the Chernobyl nuclear power plant. RESULTS: We detected lower effective population size in populations most exposed to ionizing radiation in the Chernobyl Exclusion Zone that is not compensated by migrations from surrounding areas. We also highlighted a decreased body condition of frogs living in the most contaminated area, a distinctive transcriptomics signature and stop-gained mutations in genes involved in energy metabolism. While the association with dose will remain correlational until further experiments, a body of evidence suggests the direct or indirect involvement of radiation exposure in these changes. CONCLUSIONS: Despite ongoing migration and lower total dose rates absorbed than at the time of the accident, our results demonstrate that Hyla orientalis specimens living in the Chernobyl Exclusion Zone are still undergoing deleterious changes, emphasizing the long-term impacts of the nuclear disaster.


Asunto(s)
Accidente Nuclear de Chernóbil , Animales , Humanos , Densidad de Población , Animales Salvajes , Radiación Ionizante , Anuros/genética
3.
Ecotoxicol Environ Saf ; 249: 114353, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36516628

RESUMEN

Ionizing radiation can reduce survival, reproduction and affect development, and lead to the extinction of populations if their evolutionary response is insufficient. However, demographic and evolutionary studies on the effects of ionizing radiation are still scarce. Using an experimental evolution approach, we analyzed population growth rate and associated change in life history traits across generations in Caenorhabditis elegans populations exposed to 0, 1.4, and 50.0 mGy.h-1 of ionizing radiation (gamma external irradiation). We found a higher population growth rate in the 1.4 mGy.h-1 treatment and a lower in the 50.0 mGy.h-1 treatment compared to the control. Realized fecundity was lower in both 1.4 and 50.0 mGy.h-1 than control treatment. High irradiation levels decreased brood size from self-fertilized hermaphrodites, specifically early brood size. Finally, high irradiation levels decreased hatching success compared to the control condition. In reciprocal-transplant experiments, we found that life in low irradiation conditions led to the evolution of higher hatching success and late brood size. These changes could provide better tolerance against ionizing radiation, investing more in self-maintenance than in reproduction. These evolutionary changes were with some costs of adaptation. This study shows that ionizing radiation has both demographic and evolutionary consequences on populations.


Asunto(s)
Caenorhabditis elegans , Radiación Ionizante , Animales , Caenorhabditis elegans/fisiología , Reproducción/efectos de la radiación , Rayos gamma , Demografía
4.
PLoS Genet ; 15(6): e1008216, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31246957

RESUMEN

ASAP1 is a multi-domain adaptor protein that regulates cytoskeletal dynamics, receptor recycling and intracellular vesicle trafficking. Its expression is associated with poor prognosis for a variety of cancers, and promotes cell migration, invasion and metastasis. Little is known about its physiological role. In this study, we used mice with a gene-trap inactivated ASAP1 locus to study the functional role of ASAP1 in vivo, and found defects in tissues derived from mesenchymal progenitor cells. Loss of ASAP1 led to growth retardation and delayed ossification typified by enlarged hypertrophic zones in growth plates and disorganized chondro-osseous junctions. Furthermore, loss of ASAP1 led to delayed adipocyte development and reduced fat depot formation. Consistently, deletion of ASAP1 resulted in accelerated chondrogenic differentiation of mesenchymal cells in vitro, but suppressed osteo- and adipogenic differentiation. Mechanistically, we found that FAK/Src and PI3K/AKT signaling is compromised in Asap1GT/GT MEFs, leading to impaired adipogenic differentiation. Dysregulated FAK/Src and PI3K/AKT signaling is also associated with attenuated osteogenic differentiation. Together these observations suggest that ASAP1 plays a decisive role during the differentiation of mesenchymal progenitor cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Adipogénesis/genética , Condrogénesis/genética , Osteogénesis/genética , Animales , Diferenciación Celular/genética , Quinasa 1 de Adhesión Focal/genética , Regulación del Desarrollo de la Expresión Génica/genética , Placa de Crecimiento/crecimiento & desarrollo , Placa de Crecimiento/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Proteína Oncogénica v-akt/genética , Fosfatidilinositol 3-Quinasas/genética , Familia-src Quinasas/genética
5.
Ecotoxicol Environ Saf ; 225: 112793, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34544019

RESUMEN

Understanding the effects of chronic exposure to pollutants over generations is of primary importance for the protection of humans and the environment; however, to date, knowledge on the molecular mechanisms underlying multigenerational adverse effects is scarce. We employed a systems biology approach to analyze effects of chronic exposure to gamma radiation at molecular, tissue and individual levels in the nematode Caenorhabditis elegans. Our data show a decrease of 23% in the number of offspring on the first generation F0 and more than 40% in subsequent generations F1, F2 and F3. To unveil the impact on the germline, an in-depth analysis of reproductive processes involved in gametes formation was performed for all four generations. We measured a decrease in the number of mitotic germ cells accompanied by increased cell-cycle arrest in the distal part of the gonad. Further impact on the germline was manifested by decreased sperm quantity and quality. In order to obtain insight in the molecular mechanisms leading to decreased fecundity, gene expression was investigated via whole genome RNA sequencing. The transcriptomic analysis revealed modulation of transcription factors, as well as genes involved in stress response, unfolded protein response, lipid metabolism and reproduction. Furthermore, a drastic increase in the number of differentially expressed genes involved in defense response was measured in the last two generations, suggesting a cumulative stress effect of ionizing radiation exposure. Transcription factor binding site enrichment analysis and the use of transgenic strain identified daf-16/FOXO as a master regulator of genes differentially expressed in response to radiation. The presented data provide new knowledge with respect to the molecular mechanisms involved in reproductive toxic effects and accumulated stress resulting from multigenerational exposure to ionizing radiation.


Asunto(s)
Caenorhabditis elegans , Biología de Sistemas , Animales , Caenorhabditis elegans/genética , Células Germinativas , Humanos , Radiación Ionizante , Análisis de Sistemas
6.
Nature ; 507(7492): 381-385, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24531765

RESUMEN

A core promoter is a stretch of DNA surrounding the transcription start site (TSS) that integrates regulatory inputs and recruits general transcription factors to initiate transcription. The nature and causative relationship of the DNA sequence and chromatin signals that govern the selection of most TSSs by RNA polymerase II remain unresolved. Maternal to zygotic transition represents the most marked change of the transcriptome repertoire in the vertebrate life cycle. Early embryonic development in zebrafish is characterized by a series of transcriptionally silent cell cycles regulated by inherited maternal gene products: zygotic genome activation commences at the tenth cell cycle, marking the mid-blastula transition. This transition provides a unique opportunity to study the rules of TSS selection and the hierarchy of events linking transcription initiation with key chromatin modifications. We analysed TSS usage during zebrafish early embryonic development at high resolution using cap analysis of gene expression, and determined the positions of H3K4me3-marked promoter-associated nucleosomes. Here we show that the transition from the maternal to zygotic transcriptome is characterized by a switch between two fundamentally different modes of defining transcription initiation, which drive the dynamic change of TSS usage and promoter shape. A maternal-specific TSS selection, which requires an A/T-rich (W-box) motif, is replaced with a zygotic TSS selection grammar characterized by broader patterns of dinucleotide enrichments, precisely aligned with the first downstream (+1) nucleosome. The developmental dynamics of the H3K4me3-marked nucleosomes reveal their DNA-sequence-associated positioning at promoters before zygotic transcription and subsequent transcription-independent adjustment to the final position downstream of the zygotic TSS. The two TSS-defining grammars coexist, often physically overlapping, in core promoters of constitutively expressed genes to enable their expression in the two regulatory environments. The dissection of overlapping core promoter determinants represents a framework for future studies of promoter structure and function across different regulatory contexts.


Asunto(s)
Regiones Promotoras Genéticas/genética , Sitio de Iniciación de la Transcripción , Pez Cebra/genética , Animales , Secuencia de Bases , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Histonas/metabolismo , Metilación , Madres , Nucleosomas/genética , Iniciación de la Transcripción Genética , Transcriptoma/genética , Pez Cebra/embriología , Cigoto/metabolismo
7.
Int J Mol Sci ; 21(11)2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32512748

RESUMEN

Embryonic development is particularly vulnerable to stress and DNA damage, as mutations can accumulate through cell proliferation in a wide number of cells and organs. However, the biological effects of chronic exposure to ionising radiation (IR) at low and moderate dose rates (< 6 mGy/h) remain largely controversial, raising concerns for environmental protection. The present study focuses on the molecular effects of IR (0.005 to 50 mGy/h) on zebrafish embryos at the gastrula stage (6 hpf), at both the transcriptomics and epigenetics levels. Our results show that exposure to IR modifies the expression of genes involved in mitochondrial activity from 0.5 to 50 mGy/h. In addition, important developmental pathways, namely, the Notch, retinoic acid, BMP and Wnt signalling pathways, were altered at 5 and 50 mGy/h. Transcriptional changes of genes involved in the morphogenesis of the ectoderm and mesoderm were detected at all dose rates, but were prominent from 0.5 to 50 mGy/h. At the epigenetic level, exposure to IR induced a hypomethylation of DNA in the promoter of genes that colocalised with both H3K27me3 and H3Kme4 histone marks and correlated with changes in transcriptional activity. Finally, pathway enrichment analysis demonstrated that the DNA methylation changes occurred in the promoter of important developmental genes, including morphogenesis of the ectoderm and mesoderm. Together, these results show that the transcriptional program regulating morphogenesis in gastrulating embryos was modified at dose rates greater than or equal to 0.5 mGy/h, which might predict potential neurogenesis and somitogenesis defects observed at similar dose rates later in development.


Asunto(s)
Metilación de ADN/efectos de la radiación , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Morfogénesis/genética , Organogénesis/genética , Regiones Promotoras Genéticas , Radiación Ionizante , Activación Transcripcional/efectos de la radiación , Pez Cebra/genética , Animales , Biología Computacional/métodos , Ectodermo/embriología , Ectodermo/metabolismo , Ectodermo/efectos de la radiación , Perfilación de la Expresión Génica , Mesodermo/embriología , Mesodermo/metabolismo , Mesodermo/efectos de la radiación , Transcriptoma , Pez Cebra/embriología
8.
Cytokine ; 106: 1-11, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29501710

RESUMEN

The self-renewal capacity of germline derived stem cells (GSCs) makes them an ideal source for research and use in clinics. Despite the presence of active gene network similarities between embryonic stem cells (ESCs) and GSCs, there are unanswered questions regarding the roles of evolutionary conserved genes in GSCs. To determine the reprogramming potential of germ cell- specific genes, we designed a polycistronic gene cassette expressing Stella, Oct4 and Nanos2 in a lentiviral-based vector. Deep transcriptome analysis showed the activation of a set of pluripotency and germ-cell-specific markers and the downregulation of innate immune system. The global shut down of antiviral genes included MHC class I, interferon response genes and dsRNA 2'-5'-oligoadenylate synthetase are critical pathways that has been affected . Individual expression of each factor highlighted suppressive effect of Nanos2 on genes such as Isg15 and Oasl2. Collectively, to our knowledge this is the first report showing that Nanos2 could be considered as an immunosuppressive factor. Furthermore, our results demonstrate suppression of endogenous retrotransposons that harbor immune response but further analysis require to uncover the correlation between transposon suppression and immune response in germ cell development.


Asunto(s)
Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Inmunidad Innata/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Animales , Reprogramación Celular , Proteínas Cromosómicas no Histona , Elementos Transponibles de ADN/genética , Regulación hacia Abajo/genética , Retrovirus Endógenos/metabolismo , Redes Reguladoras de Genes , Células HEK293 , Humanos , Ratones Endogámicos BALB C , Modelos Biológicos , Regiones Promotoras Genéticas/genética , ARN Largo no Codificante/genética
9.
Environ Sci Technol ; 52(7): 4331-4339, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29486114

RESUMEN

Our aim was to investigate epigenetic changes in Daphnia magna after a 25-day chronic external γ irradiation (generation F0 exposed to 6.5 µGy·h-1 or 41.3 mGy·h-1) and their potential inheritance by subsequent recovering generations, namely, F2 (exposed as germline cells in F1 embryos) and F3 (the first truly unexposed generation). Effects on survival, growth, and reproduction were observed and DNA was extracted for whole-genome bisulfite sequencing in all generations. Results showed effects on reproduction in F0 but no effect in the subsequent generations F1, F2, and F3. In contrast, we observed significant methylation changes at specific CpG positions in every generation independent of dose rate, with a majority of hypomethylation. Some of these changes were shared between dose rates and between generations. Associated gene functions included gene families and genes that were previously shown to play roles during exposure to ionizing radiation. Common methylation changes detected between generations F2 and F3 clearly showed that epigenetic modifications can be transmitted to unexposed generations, most likely through the germline, with potential implications for environmental risk.


Asunto(s)
Metilación de ADN , Daphnia , Animales , Epigénesis Genética , Rayos gamma , Reproducción
10.
Development ; 141(10): 2075-84, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24803655

RESUMEN

Thalamocortical axons (TCAs) pass through the prethalamus in the first step of their neural circuit formation. Although it has been supposed that the prethalamus is an intermediate target for thalamocortical projection formation, much less is known about the molecular mechanisms of this targeting. Here, we demonstrated the functional implications of the prethalamus in the formation of this neural circuit. We show that Olig2 transcription factor, which is expressed in the ventricular zone (VZ) of prosomere 3, regulates prethalamus formation, and loss of Olig2 results in reduced prethalamus size in early development, which is accompanied by expansion of the thalamic eminence (TE). Extension of TCAs is disorganized in the Olig2-KO dorsal thalamus, and initial elongation of TCAs is retarded in the Olig2-KO forebrain. Microarray analysis demonstrated upregulation of several axon guidance molecules, including Epha3 and Epha5, in the Olig2-KO basal forebrain. In situ hybridization showed that the prethalamus in the wild type excluded the expression of Epha3 and Epha5, whereas loss of Olig2 resulted in reduction of this Ephas-negative area and the corresponding expansion of the Ephas-positive TE. Dissociated cultures of thalamic progenitor cells demonstrated that substrate-bound EphA3 suppresses neurite extension from dorsal thalamic neurons. These results indicate that Olig2 is involved in correct formation of the prethalamus, which leads to exclusion of the EphA3-expressing region and is crucial for proper TCA formation. Our observation is the first report showing the molecular mechanisms underlying how the prethalamus acts on initial thalamocortical projection formation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Red Nerviosa/embriología , Proteínas del Tejido Nervioso/fisiología , Vías Nerviosas/embriología , Tálamo/embriología , Animales , Axones/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células Cultivadas , Embrión de Pollo , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Red Nerviosa/metabolismo , Proteínas del Tejido Nervioso/genética , Vías Nerviosas/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Factores de Transcripción/fisiología
11.
Genome Res ; 23(11): 1938-50, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24002785

RESUMEN

Spatiotemporal control of gene expression is central to animal development. Core promoters represent a previously unanticipated regulatory level by interacting with cis-regulatory elements and transcription initiation in different physiological and developmental contexts. Here, we provide a first and comprehensive description of the core promoter repertoire and its dynamic use during the development of a vertebrate embryo. By using cap analysis of gene expression (CAGE), we mapped transcription initiation events at single nucleotide resolution across 12 stages of zebrafish development. These CAGE-based transcriptome maps reveal genome-wide rules of core promoter usage, structure, and dynamics, key to understanding the control of gene regulation during vertebrate ontogeny. They revealed the existence of multiple classes of pervasive intra- and intergenic post-transcriptionally processed RNA products and their developmental dynamics. Among these RNAs, we report splice donor site-associated intronic RNA (sRNA) to be specific to genes of the splicing machinery. For the identification of conserved features, we compared the zebrafish data sets to the first CAGE promoter map of Tetraodon and the existing human CAGE data. We show that a number of features, such as promoter type, newly discovered promoter properties such as a specialized purine-rich initiator motif, as well as sRNAs and the genes in which they are detected, are conserved in mammalian and Tetraodon CAGE-defined promoter maps. The zebrafish developmental promoterome represents a powerful resource for studying developmental gene regulation and revealing promoter features shared across vertebrates.


Asunto(s)
Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Purinas/metabolismo , Sitio de Iniciación de la Transcripción , Pez Cebra/embriología , Pez Cebra/genética , Animales , Evolución Molecular , Perfilación de la Expresión Génica , Genes , Genoma , Filogenia , Regiones Promotoras Genéticas , ARN/genética , ARN/metabolismo , Caperuzas de ARN/genética , Empalme del ARN , Transcriptoma , Vertebrados/genética
12.
Stem Cells ; 33(3): 892-903, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25376791

RESUMEN

The teleost brain has the remarkable ability to generate new neurons and to repair injuries during adult life stages. Maintaining life-long neurogenesis requires careful management of neural stem cell pools. In a genome-wide expression screen for transcription regulators, the id1 gene, encoding a negative regulator of E-proteins, was found to be upregulated in response to injury. id1 expression was mapped to quiescent type I neural stem cells in the adult telencephalic stem cell niche. Gain and loss of id1 function in vivo demonstrated that Id1 promotes stem cell quiescence. The increased id1 expression observed in neural stem cells in response to injury appeared independent of inflammatory signals, suggesting multiple antagonistic pathways in the regulation of reactive neurogenesis. Together, we propose that Id1 acts to maintain the neural stem cell pool by counteracting neurogenesis-promoting signals.


Asunto(s)
Encéfalo/citología , Proteína 2 Inhibidora de la Diferenciación/fisiología , Neurogénesis/fisiología , Neuroglía/citología , Telencéfalo/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/fisiología , Animales , Encéfalo/metabolismo , Proliferación Celular/fisiología , Proteína 2 Inhibidora de la Diferenciación/genética , Proteína 2 Inhibidora de la Diferenciación/metabolismo , Neuroglía/metabolismo , Telencéfalo/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
13.
Arch Toxicol ; 90(7): 1729-36, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27100116

RESUMEN

In our previous work, we established an in vitro variant of the currently developed in vivo PIG-A assay as promising mutagenicity test system. We applied the human B-lymphoblastoid cell line TK6 for the in vitro assay development, which is based on the cellular glycosylphosphatidylinositol (GPI) status. At least 22 genes are involved in GPI biosynthesis, leading to the complex situation that, in principle, multiple genes could induce a GPI-deficient phenotype by acquiring inactivating mutations. However, only the PIG-A gene is located on the X-chromosome, rendering PIG-A more sensitive compared to autosomal linked, GPI-relevant genes. In this work, we investigated the GPI-related genotype-to-phenotype relationship in TK6 cells. By a next-generation sequencing approach, we identified a heterozygous chromosomal deletion on chromosome 17, where the PIG-L gene is located. In the analyzed TK6 cell clones, the GPI-deficient phenotype was induced either by mutations in PIG-A, by the complete absence of PIG-A mRNA, or by deletions in the remaining functional PIG-L gene, causing loss of heterozygosity. The identified PIG-L heterozygosity could also be responsible for the increased sensitivity toward mutagenic ethyl methanesulfonate or UV-C treatments of p53-proficient TK6 compared to the TK6-related, but p53-deficient WI-L2-NS cell line. Moreover, the WI-L2-NS cell line was found to exhibit a much lower number of GPI-deficient mutant cells in the purchased cell batch, and WI-L2-NS exerted a lower spontaneous rate of GPI deficiency compared to TK6 cells.


Asunto(s)
Glicosilfosfatidilinositoles/biosíntesis , Proteínas de la Membrana/genética , Pruebas de Mutagenicidad/métodos , Mutación , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Deleción Cromosómica , Cromosomas Humanos Par 17/genética , Análisis Mutacional de ADN , Electroforesis en Gel de Agar , Metanosulfonato de Etilo/toxicidad , Citometría de Flujo , Estudios de Asociación Genética , Glicosilfosfatidilinositoles/deficiencia , Glicosilfosfatidilinositoles/genética , Heterocigoto , Humanos , Mutación/efectos de los fármacos , Mutación/efectos de la radiación , Rayos Ultravioleta/efectos adversos
14.
Dev Biol ; 380(2): 351-62, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23684812

RESUMEN

Transcription is the primary step in the retrieval of genetic information. A substantial proportion of the protein repertoire of each organism consists of transcriptional regulators (TRs). It is believed that the differential expression and combinatorial action of these TRs is essential for vertebrate development and body homeostasis. We mined the zebrafish genome exhaustively for genes encoding TRs and determined their expression in the zebrafish embryo by sequencing to saturation and in situ hybridisation. At the evolutionary conserved phylotypic stage, 75% of the 3302 TR genes encoded in the genome are already expressed. The number of expressed TR genes increases only marginally in subsequent stages and is maintained during adulthood suggesting important roles of the TR genes in body homeostasis. Fewer than half of the TR genes (45%, n=1711 genes) are expressed in a tissue-restricted manner in the embryo. Transcripts of 207 genes were detected in a single tissue in the 24h embryo, potentially acting as regulators of specific processes. Other TR genes were expressed in multiple tissues. However, with the exception of certain territories in the nervous system, we did not find significant synexpression suggesting that most tissue-restricted TRs act in a freely combinatorial fashion. Our data indicate that elaboration of body pattern and function from the phylotypic stage onward relies mostly on redeployment of TRs and post-transcriptional processes.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Genes Reguladores , Pez Cebra/embriología , Animales , Tipificación del Cuerpo , Biblioteca de Genes , Transcripción Genética , Pez Cebra/genética
15.
Appl Environ Microbiol ; 80(16): 4911-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24907323

RESUMEN

Pseudomonas putida is a Gram-negative soil bacterium which is well-known for its versatile lifestyle, controlled by a large repertoire of transcriptional regulators. Besides one- and two-component regulatory systems, the genome of P. putida reveals 19 extracytoplasmic function (ECF) sigma factors involved in the adaptation to changing environmental conditions. In this study, we demonstrate that knockout of extracytoplasmic function sigma factor ECF-10, encoded by open reading frame PP4553, resulted in 2- to 4-fold increased antibiotic resistance to quinolone, ß-lactam, sulfonamide, and chloramphenicol antibiotics. In addition, the ECF-10 mutant exhibited enhanced formation of biofilms after 24 h of incubation. Transcriptome analysis using Illumina sequencing technology resulted in the detection of 12 genes differentially expressed (>2-fold) in the ECF-10 knockout mutant strain compared to their levels of expression in wild-type cells. Among the upregulated genes were ttgA, ttgB, and ttgC, which code for the major multidrug efflux pump TtgABC in P. putida KT2440. Investigation of an ECF-10 and ttgA double-knockout strain and a ttgABC-overexpressing strain demonstrated the involvement of efflux pump TtgABC in the stress resistance and biofilm formation phenotypes of the ECF-10 mutant strain, indicating a new role for this efflux pump beyond simple antibiotic resistance in P. putida KT2440.


Asunto(s)
Proteínas Bacterianas/genética , Biopelículas , Pseudomonas putida/genética , Factor sigma/genética , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana , Regulación Bacteriana de la Expresión Génica , Técnicas de Inactivación de Genes , Pseudomonas putida/efectos de los fármacos , Pseudomonas putida/fisiología , Factor sigma/metabolismo , Estrés Fisiológico
16.
Fish Shellfish Immunol ; 40(1): 217-24, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25014315

RESUMEN

Neutrophils are the most abundant polymorphonuclear leukocytes, presenting the first line of defence against infection or tissue damage. To characterize the molecular changes on the protein level in neutrophils during sterile inflammation we established the chemically-induced inflammation (ChIn) assay in adult zebrafish and investigated the proteome dynamics within neutrophils of adult zebrafish upon inflammation. Through label-free proteomics we identified 48 proteins that were differentially regulated during inflammation. Gene ontology analysis revealed that these proteins were associated with cell cycle, nitric oxide signalling, regulation of cytoskeleton rearrangement and intermediate filaments as well as immune-related processes such as antigen presentation, leucocyte chemotaxis and IL-6 signalling. Comparison of protein expression dynamics with transcript expression dynamics suggests the existence of regulatory mechanisms confined to the protein level for some genes. This is the first proteome analysis of adult zebrafish neutrophils upon chemically-induced inflammation providing a valuable reference for future studies using zebrafish inflammation models.


Asunto(s)
Inmunidad Innata/efectos de los fármacos , Proteoma/genética , Transducción de Señal/efectos de los fármacos , Proteínas de Pez Cebra/genética , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/inmunología , Inflamación/inducido químicamente , Espectrometría de Masas , Neutrófilos/citología , Neutrófilos/inmunología , Pez Cebra/genética , Pez Cebra/inmunología
17.
Nature ; 455(7209): 114-8, 2008 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-18690213

RESUMEN

Motility is a universal property of newly generated neurons. How cell migration is coordinately regulated with other aspects of neuron production is not well understood. Here we show that the proneural protein neurogenin 2 (Neurog2), which controls neurogenesis in the embryonic cerebral cortex, directly induces the expression of the small GTP-binding protein Rnd2 (ref. 3) in newly generated mouse cortical neurons before they initiate migration. Rnd2 silencing leads to a defect in radial migration of cortical neurons similar to that observed when the Neurog2 gene is deleted. Remarkably, restoring Rnd2 expression in Neurog2-mutant neurons is sufficient to rescue their ability to migrate. Our results identify Rnd2 as a novel essential regulator of neuronal migration in the cerebral cortex and demonstrate that Rnd2 is a major effector of Neurog2 function in the promotion of migration. Thus, a proneural protein controls the complex cellular behaviour of cell migration through a remarkably direct pathway involving the transcriptional activation of a small GTP-binding protein.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Movimiento Celular , Corteza Cerebral/citología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Regiones no Traducidas 3'/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Forma de la Célula , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Elementos de Facilitación Genéticos/genética , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Ratones , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Interferencia de ARN , Proteínas de Unión al GTP rho/deficiencia , Proteínas de Unión al GTP rho/genética
18.
Environ Sci Pollut Res Int ; 31(5): 6587-6596, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37966636

RESUMEN

The adverse outcome pathway (AOP) has been conceptualized in 2010 as an analytical construct to describe a sequential chain of causal links between key events, from a molecular initiating event leading to an adverse outcome (AO), considering several levels of biological organization. An AOP aims to identify and organize available knowledge about toxic effects of chemicals and drugs, either in ecotoxicology or toxicology, and it can be helpful in both basic and applied research and serve as a decision-making tool in support of regulatory risk assessment. The AOP concept has evolved since its introduction, and recent research in toxicology, based on integrative systems biology and artificial intelligence, gave it a new dimension. This innovative in silico strategy can help to decipher mechanisms of action and AOP and offers new perspectives in AOP development. However, to date, this strategy has not yet been applied to ecotoxicology. In this context, the main objective of this short article is to discuss the relevance and feasibility of transferring this strategy to ecotoxicology. One of the challenges to be discussed is the level of organisation that is relevant to address for the AO (population/community). This strategy also offers many advantages that could be fruitful in ecotoxicology and overcome the lack of time, such as the rapid identification of data available at a time t, or the identification of "data gaps". Finally, this article proposes a step forward with suggested priority topics in ecotoxicology that could benefit from this strategy.


Asunto(s)
Rutas de Resultados Adversos , Ecotoxicología , Ecotoxicología/métodos , Inteligencia Artificial , Medición de Riesgo/métodos
19.
Int J Radiat Biol ; 100(7): 982-995, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38718325

RESUMEN

PURPOSE: The Organisation for Economic Co-operation and Development (OECD) Adverse Outcome Pathway (AOP) Development Programme is being explored in the radiation field, as an overarching framework to identify and prioritize research needs that best support strengthening of radiation risk assessment and risk management strategies. To advance the use of AOPs, an international horizon-style exercise (HSE) was initiated through the Radiation/Chemical AOP Joint Topical Group (JTG) formed by the OECD Nuclear Energy Agency (NEA) High-Level Group on Low Dose Research (HLG-LDR) under the auspices of the Committee on Radiological Protection and Public Health (CRPPH). The intent of the HSE was to identify key research questions for consideration in AOP development that would help to reduce uncertainties in estimating the health risks following exposures to low dose and low dose-rate ionizing radiation. The HSE was conducted in several phases involving the solicitation of relevant questions, a collaborative review of open-ended candidate questions and an elimination exercise that led to the selection of 25 highest priority questions for the stated purpose. These questions were further ranked by over 100 respondents through an international survey. This final set of questions was judged to provide insights into how the OECD's AOP approach can be put into practice to meet the needs of hazard and risk assessors, regulators, and researchers. This paper examines the 25 priority questions in the context of hazard/risk assessment framework for ionizing radiation. CONCLUSION: By addressing the 25 priority questions, it is anticipated that constructed AOPs will have a high level of specificity, making them valuable tools for simplifying and prioritizing complex biological processes for use in developing revised radiation hazard and risk assessment strategies.


Asunto(s)
Rutas de Resultados Adversos , Humanos , Medición de Riesgo , Protección Radiológica/métodos , Internacionalidad , Traumatismos por Radiación/prevención & control , Traumatismos por Radiación/etiología
20.
Environ Sci Technol ; 47(7): 3316-25, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23458150

RESUMEN

Methyl mercury (MeHg) is a neurotoxicant with adverse effects on the development of the nervous system from fish to man. Despite a detailed understanding of the molecular mechanisms by which MeHg affects cellular homeostasis, it is still not clear how MeHg causes developmental neurotoxicity. We performed here a genome-wide transcriptional analysis of MeHg-exposed zebrafish embryos and combined this with a whole-mount in situ expression analysis of 88 MeHg-affected genes. The majority of the analyzed genes showed tissue- and region-restricted responses in various organs and tissues. The genes were linked to gene ontology terms like oxidative stress, transport and cell protection. Areas even within the central nervous system (CNS) are affected differently resulting in distinct cellular stress responses. Our study revealed an unexpected heterogeneity in gene responses to MeHg exposure in different tissues and neuronal subregions, even though the known molecular action of MeHg would predict a similar burden of exposed cells. The overall structure of the developing brain of MeHg-exposed embryos appeared normal, suggesting that the mechanism leading to differentiation of the CNS is not overtly affected by exposure to MeHg. We propose that MeHg disturbs the function of the CNS by disturbing the cellular homeostasis. As these cellular stress responses comprise genes that are also involved in normal neuronal activity and learning, MeHg may affect the developing CNS in a subtle manner that manifests itself in behavioral deficits.


Asunto(s)
Sistema Nervioso Central/metabolismo , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Compuestos de Metilmercurio/toxicidad , Neurotoxinas/toxicidad , Pez Cebra/embriología , Pez Cebra/genética , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/patología , Análisis por Conglomerados , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Embrión no Mamífero/efectos de los fármacos , Exposición a Riesgos Ambientales , Ontología de Genes , Hibridación in Situ , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA