Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(15): e2401632121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38568970

RESUMEN

Photosynthetic protists, known as microalgae, are key contributors to primary production on Earth. Since early in evolution, they coexist with bacteria in nature, and their mode of interaction shapes ecosystems. We have recently shown that the bacterium Pseudomonas protegens acts algicidal on the microalga Chlamydomonas reinhardtii. It secretes a cyclic lipopeptide and a polyyne that deflagellate, blind, and lyse the algae [P. Aiyar et al., Nat. Commun. 8, 1756 (2017) and V. Hotter et al., Proc. Natl. Acad. Sci. U.S.A. 118, e2107695118 (2021)]. Here, we report about the bacterium Mycetocola lacteus, which establishes a mutualistic relationship with C. reinhardtii and acts as a helper. While M. lacteus enhances algal growth, it receives methionine as needed organic sulfur and the vitamins B1, B3, and B5 from the algae. In tripartite cultures with the alga and the antagonistic bacterium P. protegens, M. lacteus aids the algae in surviving the bacterial attack. By combining synthetic natural product chemistry with high-resolution mass spectrometry and an algal Ca2+ reporter line, we found that M. lacteus rescues the alga from the antagonistic bacterium by cleaving the ester bond of the cyclic lipopeptide involved. The resulting linearized seco acid does not trigger a cytosolic Ca2+ homeostasis imbalance that leads to algal deflagellation. Thus, the algae remain motile, can swim away from the antagonistic bacteria and survive the attack. All three involved genera cooccur in nature. Remarkably, related species of Pseudomonas and Mycetocola also act antagonistically against C. reinhardtii or as helper bacteria in tripartite cultures.


Asunto(s)
Chlamydomonas reinhardtii , Ecosistema , Bacterias , Eucariontes , Lipopéptidos
2.
Chemistry ; 30(18): e202304007, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38271285

RESUMEN

A fully enantioselective, catalytic synthesis of the algal morphogen (-)-thallusin using polyene cyclization chemistry is reported. The synthesis features dedicated precursor design, introduction of a TMS-substituted arene as a regioselective terminator, very high enantiomer excess (ee) on gram scale, and productive scaffold functionalization. Furthermore, an ee determination methodology of thallusin samples was developed, and the ee of biosynthesized thallusin was determined. Fe(III)-uptake studies demonstrated that the cellular uptake of iron facilitated by thallusin derivatives was independent of their morphogenic activity, suggesting their active import via siderophore transporters as a shuttle system.


Asunto(s)
Piridinas , Algas Marinas , Ulva , Compuestos Férricos , Estereoisomerismo , Sideróforos
3.
New Phytol ; 237(5): 1620-1635, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36464797

RESUMEN

The antagonistic bacterium Pseudomonas protegens secretes the cyclic lipopeptide (CLiP) orfamide A, which triggers a Ca2+ signal causing rapid deflagellation of the microalga Chlamydomonas reinhardtii. We performed chemical synthesis of orfamide A derivatives and used an aequorin reporter line to measure their Ca2+ responses. Immobilization of algae was studied using a modulator and mutants of transient receptor potential (TRP)-type channels. By investigating targeted synthetic orfamide A derivatives, we found that N-terminal amino acids of the linear part and the terminal fatty acid region are important for the specificity of the Ca2+ -signal causing deflagellation. Molecular editing indicates that at least two distinct Ca2+ -signaling pathways are triggered. One is involved in deflagellation (Thr3 change, fatty acid tail shortened by 4C), whereas the other still causes an increase in cytosolic Ca2+ in the algal cells, but does not cause substantial deflagellation (Leu1 change, fatty acid hydroxylation, fatty acid changes by 2C). Using mutants, we define four TRP-type channels that are involved in orfamide A signaling; only one (ADF1) responds additionally to low pH. These results suggest that the linear part of the CLiP plays one major role in Ca2+ signaling, and that orfamide A uses a network of algal TRP-type channels for deflagellation.


Asunto(s)
Chlamydomonas reinhardtii , Flagelos , Flagelos/metabolismo , Chlamydomonas reinhardtii/metabolismo , Bacterias , Transducción de Señal , Lipopéptidos/farmacología , Lipopéptidos/metabolismo
4.
Angew Chem Int Ed Engl ; 62(42): e202304901, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37403384

RESUMEN

Methanobactin OB3b (Mbn-OB3b) is a unique natural product with stunning affinity for copper ions (Ka ≈Cu(I) 1034 ). Here, we report the first total synthesis of Cu(I)-bound methanobactin OB3b featuring as key transformations a cyclodehydration-thioacylation sequence, to generate the conjugated heterocyclic systems, and a copper-templated cyclization, to complete the caged structure of the very sensitive target compound.

5.
Chemistry ; 28(20): e202104417, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35199896

RESUMEN

A total synthesis of the cyclic lipodepsipeptide natural product orfamide A was achieved. By developing a synthesis format using an aminoacid ester building block and SPPS protocol adaptation, a focused library of target compounds was obtained, in high yield and purity. Spectral and LC-HRMS data of all library members with the isolated natural product identified the 5 Leu residue to be d- and the 3'-OH group to be R-configured. The structural correction of orfamide A by chemical synthesis and analysis was confirmed by biological activity comparison in Chlamydomonas reinhardtii, which indicated compound configuration to be important for bioactivity. Acute toxicity was also found against Trypanosoma brucei, the parasite causing African sleeping sickness.


Asunto(s)
Productos Biológicos , Trypanosoma brucei brucei , Tripanosomiasis Africana , Animales , Lipopéptidos , Péptidos Cíclicos/química
6.
Bioorg Med Chem Lett ; 72: 128845, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35700954

RESUMEN

Ambreinolide is a natural terpenoid with great value for perfume industry and natural product synthesis. Herein we report a novel total synthesis of ambreinolide on multigram-scale that employs a regio- and diastereoselective, high yielding, proton-initiated polyene cyclization using a catalyst easily generated in situ. Molecular structures were unambiguously confirmed by X-ray crystallography.


Asunto(s)
Polienos , Terpenos , Cristalografía por Rayos X , Ciclización , Estructura Molecular , Polienos/química , Estereoisomerismo , Terpenos/química
7.
Org Biomol Chem ; 20(20): 4204-4214, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35543370

RESUMEN

Suitable designed photoswitches based on azobenzenes are essential structural features for photopharmacological compounds. Optimized azobenzenes are important for serving as building blocks in "azo extension" strategies, and for designing photodrugs with tailored properties. Herein we present the synthesis and characterization of a variety of asymmetric azobenzenes by addressing selected structural features of the diazene core, such as polarity, steric demand, and electronic properties. Systematic exploration led to photoswitches with a relaxation half-life of seconds, minutes, hours, or days. Furthermore, the influence of different substitution patterns on the photophysical properties was charted. For analysis of all switches, robust characterization as well as examination under near-to physiological conditions was established, in order to assist with photoswitch choice for specific biological applications.


Asunto(s)
Compuestos Azo , Compuestos Azo/química
8.
Mar Drugs ; 20(11)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36355014

RESUMEN

Thallusin, a highly biologically active, phytohormone-like and bacterial compound-inducing morphogenesis of the green tide-forming macroalga Ulva (Chlorophyta), was determined in bacteria and algae cultures. A sensitive and selective method was developed for quantification based on ultra-high-performance liquid chromatography coupled with electrospray ionization and a high-resolution mass spectrometer. Upon C18 solid phase extraction of the water samples, thallusin was derivatized with iodomethane to inhibit the formation of Fe−thallusin complexes interfering with the chromatographic separation. The concentration of thallusin was quantified during the relevant phases of the bacterial growth of Maribacter spp., ranging from 0.16 ± 0.01 amol cell−1 (at the peak of the exponential growth phase) to 0.86 ± 0.13 amol cell−1 (late stationary phase), indicating its accumulation in the growth medium. Finally, we directly determined the concentration of thallusin in algal culture to validate our approach for monitoring applications. Detection and quantification limits of 2.5 and 7.4 pmol L−1, respectively, were reached, which allow for quantifying ecologically relevant thallusin concentrations. Our approach will enable the surveying of thallusin in culture and in nature and will thus contribute to the chemical monitoring of aquaculture.


Asunto(s)
Chlorophyta , Piridinas , Ulva , Bacterias , Cromatografía Líquida de Alta Presión/métodos , Plantas , Ulva/microbiología
9.
Angew Chem Int Ed Engl ; 61(39): e202206746, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-35900916

RESUMEN

Chemical mediators are key compounds for controlling symbiotic interactions in the environment. Here, we disclose a fully stereoselective total synthesis of the algae differentiation factor (-)-thallusin that utilizes sophisticated 6-endo-cyclization chemistry and effective late-stage sp2 -sp2 -couplings using non-toxic reagents. An EC50 of 4.8 pM was determined by quantitative phenotype profiling in the green seaweed Ulva mutabilis (Chlorophyte), underscoring this potent mediator's enormous, pan-species bioactivity produced by symbiotic bacteria. SAR investigations indicate that (-)-thallusin triggers at least two different pathways in Ulva that may be separated by chemical editing of the mediator compound structure.


Asunto(s)
Algas Marinas , Ulva , Piridinas/química , Algas Marinas/microbiología , Simbiosis , Ulva/genética , Ulva/metabolismo , Ulva/microbiología
10.
Angew Chem Int Ed Engl ; 61(48): e202210220, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36048143

RESUMEN

The natural product jasplakinolide is widely used to stabilize F-actin. Based on extensive structure-activity relationship studies, we have developed a new generation of photoswitchable jasplakinolides that feature rationally designed red-shifted azobenzene photoswitches. Our lead compound, nOJ, can be activated with longer wavelengths in the visible range (e.g. 440-475 nm) and rapidly returns to its inactive state through thermal relaxation. nOJ enables the reversible control of F-actin dynamics, as shown through live-cell imaging, cell migration, and cell proliferation assays. Short, local irradiation with blue light resulted in highly localized and reversible actin aggregation with subcellular precision. Our optical tool can be useful in diverse fields to study actin dynamics with excellent spatiotemporal resolution.


Asunto(s)
Actinas , Depsipéptidos , Citoesqueleto de Actina , Depsipéptidos/farmacología , Movimiento Celular
11.
Chemistry ; 27(45): 11633-11642, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34032329

RESUMEN

The first total synthesis of the actin-stabilizing marine natural product geodiamolide H was achieved. Solid-phase based peptide assembly paired with scalable stereoselective syntheses of polyketide building blocks and an optimized esterification set the stage for investigating the key ring-closing metathesis. Geodiamolide H and synthetic analogues were characterized for their toxicity and for antiproliferative effects in cellulo, by characterising actin polymerization induction in vitro, and by docking on the F-actin target and property computation in silico, for a better understanding of structure-activity relationships (SAR). A non-natural analogue of geodiamolide H was discovered to be most potent in the series, suggesting significant potential for tool compound design.


Asunto(s)
Productos Biológicos , Depsipéptidos , Actinas , Depsipéptidos/farmacología , Humanos , Estereoisomerismo , Relación Estructura-Actividad
12.
Org Biomol Chem ; 19(3): 574-578, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33406188

RESUMEN

An efficient synthesis for silicon-rhodamines was developed, enabling the preparation and evaluation of silicon-rhodamine isothiocyanate (SITC) as a novel tool for facile fluorescent labeling. Ease of use in conjugation to amino groups, high stability and excellent photophysical properties are demonstrated. SITC-actin was found to be neutral to F-actin polymerization induction and well suited for high resolution fluorescence microscopy.

13.
Bioorg Med Chem ; 46: 116355, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34391122

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia. It is associated with the impairment of memory and other cognitive functions that are mainly caused by progressive defects in cholinergic and glutamatergic signaling in the central nervous system. Inhibitors of acetylcholinesterase (AChE) and ionotropic glutamate receptors of the N-methyl-d-aspartate (NMDA) receptor family are currently approved as AD therapeutics. We previously showed using a cell-based assay of NMDA receptor-mediated glutamate-induced excitotoxicity that bis-γ-carbolinium conjugates are useful NMDA receptor blockers. However, these compounds also act as subnanomolar AChE inhibitors, which may cause serious anticholinergic side effects when applied in vivo. Here, we evaluated new structures containing γ-carbolines linked to phenothiazine via a propionyl spacer. These compounds were superior to the previously characterized bis-γ-carbolinium conjugates because they blocked NMDA receptors without requiring a quaternary pyridine N-atom and inhibited AChE with moderate IC50 values of 0.54-5.3 µM. In addition, these new compounds displayed considerable selectivity for the inhibition of butyrylcholinesterase (BChE; IC50 = 0.008-0.041 µM), which may be favorable for AD treatment. Inhibitory activities towards the NMDA receptors and AChE were in the same micromolar range, which may be beneficial for equal dosing against multiple targets in AD patients.


Asunto(s)
Carbolinas/farmacología , Inhibidores de la Colinesterasa/farmacología , Fármacos Neuroprotectores/farmacología , Fenotiazinas/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Butirilcolinesterasa/metabolismo , Carbolinas/química , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Fenotiazinas/química , Receptores de N-Metil-D-Aspartato/metabolismo , Relación Estructura-Actividad
14.
Angew Chem Int Ed Engl ; 60(16): 8678-8682, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33449370

RESUMEN

Actin is essential for key processes in all eukaryotic cells. Cellpermeable optojasps provide spatiotemporal control of the actin cytoskeleton, confining toxicity and potentially rendering F-actin druggable by photopharmacology. Here, we report cryo electron microscopy (cryo-EM) structures of both isomeric states of one optojasp bound to actin filaments. The high-resolution structures reveal for the first time the pronounced effects of photoswitching a functionalized azobenzene. By characterizing the optojasp binding site and identifying conformational changes within F-actin that depend on the optojasp isomeric state, we refine determinants for the design of functional F-actin photoswitches.


Asunto(s)
Citoesqueleto de Actina/química , Actinas/química , Compuestos Azo/química , Microscopía por Crioelectrón , Modelos Moleculares , Conformación Molecular , Procesos Fotoquímicos
15.
Angew Chem Int Ed Engl ; 60(19): 10670-10679, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33625794

RESUMEN

Clostridia coordinate many important processes such as toxin production, infection, and survival by density-dependent communication (quorum sensing) using autoinducing peptides (AIPs). Although clostridial AIPs have been proposed to be (thio)lactone-containing peptides, their true structures remain elusive. Here, we report the genome-guided discovery of an AIP that controls endospore formation in Ruminiclostridium cellulolyticum. Through a combination of chemical synthesis and chemical complementation assays with a mutant strain, we reveal that the genuine chemical mediator is a homodetic cyclopeptide (cAIP). Kinetic analyses indicate that the mature cAIP is produced via a cryptic thiolactone intermediate that undergoes a rapid S→N acyl shift, in a manner similar to intramolecular native chemical ligation (NCL). Finally, by implementing a chemical probe in a targeted screen, we show that this novel enzyme-primed, intramolecular NCL is a widespread feature of clostridial AIP biosynthesis.


Asunto(s)
Clostridium/química , Péptido Hidrolasas/metabolismo , Péptidos Cíclicos/biosíntesis , Cinética , Péptido Hidrolasas/química , Péptidos Cíclicos/química
16.
J Am Chem Soc ; 142(20): 9240-9249, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32388980

RESUMEN

Cell-permeable photoswitchable small molecules, termed optojasps, are introduced to optically control the dynamics of the actin cytoskeleton and cellular functions that depend on it. These light-dependent effectors were designed from the F-actin-stabilizing marine depsipeptide jasplakinolide by functionalizing them with azobenzene photoswitches. As demonstrated, optojasps can be employed to control cell viability, cell motility, and cytoskeletal signaling with the high spatial and temporal resolution that light affords. Optojasps can be expected to find applications in diverse areas of cell biological research. They may also provide a template for photopharmacology targeting the ubiquitous actin cytoskeleton with precision control in the micrometer range.


Asunto(s)
Actinas/química , Compuestos Azo/química , Depsipéptidos/química , Bibliotecas de Moléculas Pequeñas/química , Compuestos Azo/síntesis química , Conformación Molecular , Procesos Fotoquímicos , Bibliotecas de Moléculas Pequeñas/síntesis química
17.
Nat Prod Rep ; 37(4): 541-565, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31763637

RESUMEN

Review covering up to 07/2019(-)-Parthenolide is a germacrane sesquiterpene lactone, available in ample amounts from the traditional medical plant feverfew (Tanacetum parthenium). Acting as a covalently reactive compound, it displays anti-inflammatory, redox-modulating, and epigenetic activities, as well as selective cytotoxicity towards cancer stem and progenitor cells. Furthermore, parthenolide was found to modulate microtubule dynamics by interfering with the detyrosination of α-tubulin, a specific posttranslational modification of the cytoskeleton. This review interfaces recently achieved parthenolide syntheses with strategies for bioactivity-based derivatization. Furthermore, chemical probe development from parthenolide is discussed, leading to a qualified summary of reported biological activities and implicated or identified targets. Special emphasis is given to parthenolide-induced microtubule modulation and the recently characterized tubulin carboxypeptidase enzymes involved in nerve (re)growth, cardiac muscle cell function, and metastasis development.


Asunto(s)
Sesquiterpenos/química , Sesquiterpenos/farmacología , Animales , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Carboxipeptidasas/antagonistas & inhibidores , Ciclización , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estructura Molecular , Sesquiterpenos/síntesis química , Sesquiterpenos/metabolismo , Sesquiterpenos de Germacrano/química , Estereoisomerismo
18.
Chemistry ; 26(39): 8639-8650, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32239742

RESUMEN

Allylboration reactions rank among the most reliable tools in organic synthesis. Herein, we report a general synthesis of trifunctionalized allylboronates and systematic investigations of their stereocontrolled transformations with substituted aldehyde substrates, in order to efficiently access diverse, highly substituted target substrates. A peculiar transition in stereocontrol was observed from the polar Felkin-Anh (PFA) to the Cornforth-Evans (CE) model for alkoxy- and epoxy-substituted aldehydes. CE-type transition states were uniformly identified as minima in advanced, DFT-based computational studies of allylboration reactions of epoxy aldehydes, conforming well to the experimental data, and highlighting the underestimated relevance of this model. Furthermore, a mechanism-based rationale for the substitution pattern of the epoxide was delineated that ensures high levels of stereocontrol and renders α,ß-epoxy aldehydes generally applicable substrates for target synthesis.

19.
Org Biomol Chem ; 18(8): 1567-1571, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32037437

RESUMEN

P-Rhodamines were accessed by implementing a robust three step sequence consisting of (i) addition of m-metallated anilines to dichlorophosphine oxides, (ii) selective dibromination, and (iii) cyclization of the diaryllithium reagents derived from the dibromides to form the dihydroacridophosphine core of P-rhodamines. A modified route was developed to produce non-symmetric P-rhodamines. A library of prepared P-rhodamines provides first insight into dependence of fluorophore properties on the structure of P-rhodamines. A P-rhodamine with highest batochromic shifts and quantum yields in the class was identified.

20.
Org Biomol Chem ; 17(45): 9703-9707, 2019 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-31701984

RESUMEN

Parthenolide (PTL) strongly inhibits the detyrosination of microtubules and accelerates neuronal growth. In order to access cyclic ether derivatives of PTL, ring-closing metathesis (RCM) was investigated in comparison to intramolecular sulfone alkylation. Incompatibility of RCM with epoxides was found in this setting. Biological evaluation for tubulin carboxypeptidase inhibition indicated that the epoxide is crucial for parthenolide's activity.


Asunto(s)
Carboxipeptidasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Éter/farmacología , Microtúbulos/efectos de los fármacos , Neuronas/efectos de los fármacos , Sesquiterpenos/farmacología , Adulto , Carboxipeptidasas/metabolismo , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Éter/síntesis química , Éter/química , Humanos , Estructura Molecular , Sesquiterpenos/síntesis química , Sesquiterpenos/química , Relación Estructura-Actividad , Tanacetum parthenium/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA