Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Dev Biol ; 475: 131-144, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33484706

RESUMEN

Coup-TF, a member of the nuclear receptor super-family, is present in the pool of maternal mRNAs and proteins in the sea urchin egg. The presence of this protein seems to be essential for the execution of the early developmental program, leading to all three embryonic layers. Our results demonstrate that Pl-Coup-TF morphants, i.e. Pl-Coup-TF morpholino knockdown embryos, resemble blastulae that lack archenteron at 24 hpf (hours post fertilization), a stage at which normal embryos reach the end of gastrulation in Paracentrotus lividus. At 48 hpf, when normal embryos reach the pluteus larva stage, the morphants are seemingly underdeveloped and lack the characteristic skeletal rods. Nevertheless, the morphant embryos express vegetal endomesodermal marker genes, such as Pl-Blimp1, Pl-Endo16, Pl-Alx1 and Pl-Tbr as judged by in situ hybridization experiments. The anterior neuroectoderm genes, Pl-FoxQ2, Pl-Six3 and Pl-Pax6, are also expressed in the morphant embryos, but Pl-Hbn and Pl-Fez mRNAs, which encode proteins significant for the differentiation of serotonergic neurons, are not detected. Consequently, Pl-Coup-TF morphants at 48 hpf lack serotonergic neurons, whereas normal 48 hpf plutei exhibit the formation of two bilateral pairs of such neurons in the apical organ. Furthermore, genes indicative of the ciliary band formation, Pl-Hnf6, Pl-Dri, Pl-FoxG and Pl-Otx, are not expressed in Pl-Coup-TF morphants, suggesting the disruption of this neurogenic territory as well. In addition, the Pl-SynB gene, a marker of differentiated neurons, is silent leading to the hypothesis that Pl-Coup-TF morphants might lack all types of neurons. On the contrary, the genes expressing signaling molecules, which establish the ventral/dorsal axis, Pl-Nodal and Pl-Lefty show the characteristic ventral lateral expression pattern, Pl-Bmp2/4, which activates the dorsal ectoderm GRN is down-regulated and Pl-Chordin is aberrantly over-expressed in the entire ectoderm. The identity of ectodermal cells in Pl-Coup-TF morphant embryos, was probed for expression of the ventral marker Pl-Gsc which was over-expressed and dorsal markers, Pl-IrxA and Pl-Hox7, which were silent. Therefore, we propose that maternal Pl-Coup-TF is essential for correct dissemination of the early embryonic signaling along both animal/vegetal and ventral/dorsal axes. Limiting Pl-Coup-TF's quantity, results in an embryo without digestive and nervous systems, skeleton and ciliary band that cannot survive past the initial 48 h of development.


Asunto(s)
Tipificación del Cuerpo/genética , Factores de Transcripción COUP/metabolismo , Paracentrotus/embriología , Animales , Blástula/metabolismo , Factores de Transcripción COUP/genética , Factores de Transcripción COUP/fisiología , Diferenciación Celular/genética , Ectodermo/metabolismo , Embrión no Mamífero/metabolismo , Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/genética , Factor de Apareamiento/genética , Factor de Apareamiento/metabolismo , Placa Neural/metabolismo , Paracentrotus/genética , Erizos de Mar/embriología , Erizos de Mar/metabolismo , Transducción de Señal/fisiología
2.
Dev Biol ; 416(1): 173-186, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27235147

RESUMEN

Elk proteins are Ets family transcription factors that regulate cell proliferation, survival, and differentiation in response to ERK (extracellular-signal regulated kinase)-mediated phosphorylation. Here we report the embryonic expression and function of Sp-Elk, the single Elk gene of the sea urchin Strongylocentrotus purpuratus. Sp-Elk is zygotically expressed throughout the embryo beginning at late cleavage stage, with peak expression occurring at blastula stage. Morpholino antisense-mediated knockdown of Sp-Elk causes blastula-stage developmental arrest and embryo disintegration due to apoptosis, a phenotype that is rescued by wild-type Elk mRNA. Development is also rescued by Elk mRNA encoding a serine to aspartic acid substitution (S402D) that mimics ERK-mediated phosphorylation of a conserved site that enhances DNA binding, but not by Elk mRNA encoding an alanine substitution at the same site (S402A). This demonstrates both that the apoptotic phenotype of the morphants is specifically caused by Elk depletion, and that phosphorylation of serine 402 of Sp-Elk is critical for its anti-apoptotic function. Knockdown of Sp-Elk results in under-expression of several regulatory genes involved in cell fate specification, cell cycle control, and survival signaling, including the transcriptional regulator Sp-Runt-1 and its target Sp-PKC1, both of which were shown previously to be required for cell survival during embryogenesis. Both Sp-Runt-1 and Sp-PKC1 have sequences upstream of their transcription start sites that specifically bind Sp-Elk. These results indicate that Sp-Elk is the signal-dependent activator of a feed-forward gene regulatory circuit, consisting also of Sp-Runt-1 and Sp-PKC1, which actively suppresses apoptosis in the early embryo.


Asunto(s)
Supervivencia Celular , Subunidades alfa del Factor de Unión al Sitio Principal/metabolismo , Erizos de Mar/embriología , Transducción de Señal , Factores Complejos Ternarios/metabolismo , Animales , Apoptosis/genética , Blástula , Supervivencia Celular/genética , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Oligonucleótidos Antisentido , Fosforilación , Regiones Promotoras Genéticas , Erizos de Mar/genética , Erizos de Mar/metabolismo , Transducción de Señal/genética
3.
Development ; 141(12): 2462-72, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24850857

RESUMEN

The anteroposterior patterning of the embryonic gut represents one of the most intriguing biological processes in development. A dynamic control of gene transcription regulation and cell movement is perfectly orchestrated to shape a functional gut in distinct specialized parts. Two ParaHox genes, Xlox and Cdx, play key roles in vertebrate and sea urchin gut patterning through molecular mechanisms that are still mostly unclear. Here, we have combined functional analysis methodologies with high-resolution imaging and RNA-seq to investigate Xlox and Cdx regulation and function. We reveal part of the regulatory machinery responsible for the onset of Xlox and Cdx transcription, uncover a Wnt10 signal that mediates Xlox repression in the intestinal cells, and provide evidence of Xlox- and Cdx-mediated control of stomach and intestine differentiation, respectively. Our findings offer a novel mechanistic explanation of how the control of transcription is linked to cell differentiation and morphogenesis for the development of a perfectly organized biological system such as the sea urchin larval gut.


Asunto(s)
Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Intestinos/embriología , Proteína-Lisina 6-Oxidasa/metabolismo , Strongylocentrotus purpuratus/embriología , Animales , Diferenciación Celular , Ensamble y Desensamble de Cromatina , Embrión no Mamífero/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Mucosa Intestinal/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal , Estómago/embriología , Strongylocentrotus purpuratus/genética
4.
BMC Evol Biol ; 16(1): 117, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27230062

RESUMEN

BACKGROUND: Digestive cells are present in all metazoans and provide the energy necessary for the whole organism. Pancreatic exocrine cells are a unique vertebrate cell type involved in extracellular digestion of a wide range of nutrients. Although the organization and regulation of this cell type is intensively studied in vertebrates, its evolutionary history is still unknown. In order to understand which are the elements that define the pancreatic exocrine phenotype, we have analyzed the expression of genes that contribute to specification and function of this cell-type in an early branching deuterostome, the sea urchin Strongylocentrotus purpuratus. RESULTS: We defined the spatial and temporal expression of sea urchin orthologs of pancreatic exocrine genes and described a unique population of cells clustered in the upper stomach of the sea urchin embryo where exocrine markers are co-expressed. We used a combination of perturbation analysis, drug and feeding experiments and found that in these cells of the sea urchin embryo gene expression and gene regulatory interactions resemble that of bona fide pancreatic exocrine cells. We show that the sea urchin Ptf1a, a key transcriptional activator of digestive enzymes in pancreatic exocrine cells, can substitute for its vertebrate ortholog in activating downstream genes. CONCLUSIONS: Collectively, our study is the first to show with molecular tools that defining features of a vertebrate cell-type, the pancreatic exocrine cell, are shared by a non-vertebrate deuterostome. Our results indicate that the functional cell-type unit of the vertebrate pancreas may evolutionarily predate the emergence of the pancreas as a discrete organ. From an evolutionary perspective, these results encourage to further explore the homologs of other vertebrate cell-types in traditional or newly emerging deuterostome systems.


Asunto(s)
Evolución Biológica , Estómago/citología , Strongylocentrotus purpuratus/citología , Animales , Diferenciación Celular , Linaje de la Célula , Digestión/genética , Digestión/fisiología , Regulación del Desarrollo de la Expresión Génica , Genes Reguladores , Células HEK293 , Células HeLa , Humanos , Larva/citología , Larva/metabolismo , Páncreas/citología , Ratas , Strongylocentrotus purpuratus/crecimiento & desarrollo , Strongylocentrotus purpuratus/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Vertebrados/anatomía & histología , Vertebrados/metabolismo
5.
Proc Biol Sci ; 283(1826): 20152978, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26962139

RESUMEN

Pou domain transcription factor Pou4f2 is essential for the development of retinal ganglion cells (RGCs) in the vertebrate retina. A distant orthologue of Pou4f2 exists in the genome of the sea urchin (class Echinoidea) Strongylocentrotus purpuratus (SpPou4f1/2), yet the photosensory structure of sea urchins is strikingly different from that of the mammalian retina. Sea urchins have no obvious eyes, but have photoreceptors clustered around their tube feet disc. The mechanisms that are associated with the development and function of photoreception in sea urchins are largely unexplored. As an initial approach to better understand the sea urchin photosensory structure and relate it to the mammalian retina, we asked whether SpPou4f1/2 could support RGC development in the absence of Pou4f2. To answer this question, we replaced genomic Pou4f2 with an SpPou4f1/2 cDNA. In Pou4f2-null mice, retinas expressing SpPou4f1/2 were outwardly identical to those of wild-type mice. SpPou4f1/2 retinas exhibited dark-adapted electroretinogram scotopic threshold responses, indicating functionally active RGCs. During retinal development, SpPou4f1/2 activated RGC-specific genes and in S. purpuratus, SpPou4f2 was expressed in photoreceptor cells of tube feet in a pattern distinct from Opsin4 and Pax6. Our results suggest that SpPou4f1/2 and Pou4f2 share conserved components of a gene network for photosensory development and they maintain their conserved intrinsic functions despite vast morphological differences in mouse and sea urchin photosensory structures.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Ratones/genética , Células Ganglionares de la Retina/metabolismo , Strongylocentrotus purpuratus/genética , Factor de Transcripción Brn-3B/genética , Animales , Embrión de Mamíferos/embriología , Embrión no Mamífero/embriología , Proteínas de Homeodominio/metabolismo , Ratones/crecimiento & desarrollo , Ratones/metabolismo , Células Ganglionares de la Retina/citología , Strongylocentrotus purpuratus/metabolismo , Factor de Transcripción Brn-3B/metabolismo
6.
BMC Genomics ; 15: 1035, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25429842

RESUMEN

BACKGROUND: In metazoans, opsins are photosensitive proteins involved in both vision and non-visual photoreception. Echinoderms have no well-defined eyes but several opsin genes were found in the purple sea urchin (Strongylocentrotus purpuratus) genome. Molecular data are lacking for other echinoderm classes although many species are known to be light sensitive. RESULTS: In this study focused on the European brittle star Amphiura filiformis, we first highlighted a blue-green light sensitivity using a behavioural approach. We then identified 13 new putative opsin genes against eight bona fide opsin genes in the genome of S. purpuratus. Six opsins were included in the rhabdomeric opsin group (r-opsins). In addition, one putative ciliary opsin (c-opsin), showing high similarity with the c-opsin of S. purpuratus (Sp-opsin 1), one Go opsin similar to Sp-opsins 3.1 and 3.2, two basal-branch opsins similar to Sp-opsins 2 and 5, and two neuropsins similar to Sp-opsin 8, were identified. Finally, two sequences from one putative RGR opsin similar to Sp-opsin 7 were also detected. Adult arm transcriptome analysis pinpointed opsin mRNAs corresponding to one r-opsin, one neuropsin and the homologue of Sp-opsin 2. Opsin phylogeny was determined by maximum likelihood and Bayesian analyses. Using antibodies designed against c- and r-opsins from S. purpuratus, we detected putative photoreceptor cells mainly in spines and tube feet of A. filiformis, respectively. The r-opsin expression pattern is similar to the one reported in S. purpuratus with cells labelled at the tip and at the base of the tube feet. In addition, r-opsin positive cells were also identified in the radial nerve of the arm. C-opsins positive cells, expressed in pedicellariae, spines, tube feet and epidermis in S. purpuratus were observed at the level of the spine stroma in the brittle star. CONCLUSION: Light perception in A. filiformis seems to be mediated by opsins (c- and r-) in, at least, spines, tube feet and in the radial nerve cord. Other non-visual opsin types could participate to the light perception process indicating a complex expression pattern of opsins in this infaunal brittle star.


Asunto(s)
Variación Genética , Opsinas/genética , Secuencia de Aminoácidos , Animales , Conducta Animal , Expresión Génica , Genómica , Datos de Secuencia Molecular , Opsinas/química , Opsinas/metabolismo , Filogenia
7.
Gen Comp Endocrinol ; 205: 68-79, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24971803

RESUMEN

The evolutionary history of the insulin-like peptides (ILPs), members of the insulin family, is still a matter of debate. Although ILPs structure and expression have been described in different metazoans, little is known about these molecules in non-chordate deuterostomes, such as the echinoderms. In order to fill this gap in the current literature, we have characterized two members of the insulin family found in the sea urchin Strongylocentrotus purpuratus genome (SpIgf1 and SpIgf2 that, after our analysis, we suggest to rename SpILP1 and SpILP2, respectively) together with their putative receptor (SpInsr). We found that SpILP1 gene structure is more similar to the cephalochordate amphioxus ILP, while the SpILP2 gene shows a completely different organization. In addition, we have revealed that SpILP1 and SpILP2 transcripts are expressed in different compartments during embryo/larva development and that the SpILP1 protein mature form differs in the egg and the larva, suggesting different biological roles. Finally, we have analyzed SpILP1 transcript and protein expression in response to different feeding regimes through real-time quantitative PCR, Western blot and immunohistochemistry methodologies, and found that its expression and localization are feeding-dependent. We discuss our findings in a comparative evolutionary perspective including data available in other animal models and provide new insights into the evolution of the insulin family molecules. In the model we put forward, the last common ancestor of all deuterostomes presented an ILP composed of the B-C-A-D-E domains, and successive lineage specific independent gene duplication events resulted in the presence of several ILPs in vertebrates and in echinoderms.


Asunto(s)
Evolución Molecular , Insulinas/genética , Familia de Multigenes , Péptidos/genética , Strongylocentrotus purpuratus/genética , Secuencia de Aminoácidos , Animales , Western Blotting , Conducta Alimentaria , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Insulinas/química , Larva/metabolismo , Masculino , Datos de Secuencia Molecular , Óvulo/metabolismo , Péptidos/química , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética
8.
Proc Natl Acad Sci U S A ; 108(20): 8367-72, 2011 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-21536888

RESUMEN

Different sea urchin species show a vast variety of responses to variations in light intensity; however, despite this behavioral evidence for photosensitivity, light sensing in these animals has remained an enigma. Genome information of the recently sequenced purple sea urchin (Strongylocentrotus purpuratus) allowed us to address this question from a previously unexplored molecular perspective by localizing expression of the rhabdomeric opsin Sp-opsin4 and Sp-pax6, two genes essential for photoreceptor function and development, respectively. Using a specifically designed antibody against Sp-Opsin4 and in situ hybridization for both genes, we detected expression in two distinct groups of photoreceptor cells (PRCs) located in the animal's numerous tube feet. Specific reactivity of the Sp-Opsin4 antibody with sea star optic cushions, which regulate phototaxis, suggests a similar visual function in sea urchins. Ultrastructural characterization of the sea urchin PRCs revealed them to be of a microvillar receptor type. Our data suggest that echinoderms, in contrast to chordates, deploy a microvillar, r-opsin-expressing PRC type for vision, a feature that has been so far documented only in protostome animals. Surprisingly, sea urchin PRCs lack any associated screening pigment. Indeed, one of the tube foot PRC clusters may account for directional vision by being shaded through the opaque calcite skeleton. The PRC axons connect to the animal internal nervous system, suggesting an integrative function beyond local short circuits. Because juveniles display no phototaxis until skeleton completion, we suggest a model in which the entire sea urchin, deploying its skeleton as PRC screening device, functions as a huge compound eye.


Asunto(s)
Sistema Nervioso/citología , Células Fotorreceptoras/fisiología , Erizos de Mar/fisiología , Visión Ocular/fisiología , Animales , Axones , Opsinas/análisis , Erizos de Mar/anatomía & histología , Erizos de Mar/citología , Especificidad de la Especie
9.
BMC Biol ; 11: 68, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23803323

RESUMEN

BACKGROUND: The ParaHox genes are thought to be major players in patterning the gut of several bilaterian taxa. Though this is a fundamental role that these transcription factors play, their activities are not limited to the endoderm and extend to both ectodermal and mesodermal tissues. Three genes compose the ParaHox group: Gsx, Xlox and Cdx. In some taxa (mostly chordates but to some degree also in protostomes) the three genes are arranged into a genomic cluster, in a similar fashion to what has been shown for the better-known Hox genes. Sea urchins possess the full complement of ParaHox genes but they are all dispersed throughout the genome, an arrangement that, perhaps, represented the primitive condition for all echinoderms. In order to understand the evolutionary history of this group of genes we cloned and characterized all ParaHox genes, studied their expression patterns and identified their genomic loci in a member of an earlier branching group of echinoderms, the asteroid Patiria miniata. RESULTS: We identified the three ParaHox orthologs in the genome of P. miniata. While one of them, PmGsx is provided as maternal message, with no zygotic activation afterwards, the other two, PmLox and PmCdx are expressed during embryogenesis, within restricted domains of both endoderm and ectoderm. Screening of a Patiria bacterial artificial chromosome (BAC) library led to the identification of a clone containing the three genes. The transcriptional directions of PmGsx and PmLox are opposed to that of the PmCdx gene within the cluster. CONCLUSIONS: The identification of P. miniata ParaHox genes has revealed the fact that these genes are clustered in the genome, in contrast to what has been reported for echinoids. Since the presence of an intact cluster, or at least a partial cluster, has been reported in chordates and polychaetes respectively, it becomes clear that within echinoderms, sea urchins have modified the original bilaterian arrangement. Moreover, the sea star ParaHox domains of expression show chordate-like features not found in the sea urchin, confirming that the dynamics of gene expression for the respective genes and their putative regulatory interactions have clearly changed over evolutionary time within the echinoid lineage.


Asunto(s)
Cordados/genética , Genes Homeobox/genética , Proteínas de Homeodominio/genética , Familia de Multigenes/genética , Estrellas de Mar/genética , Secuencia de Aminoácidos , Animales , Ectodermo/embriología , Ectodermo/metabolismo , Desarrollo Embrionario/genética , Evolución Molecular , Tracto Gastrointestinal/embriología , Tracto Gastrointestinal/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genoma/genética , Proteínas de Homeodominio/química , Proteínas de Homeodominio/metabolismo , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Estrellas de Mar/embriología , Factores de Tiempo
10.
Front Neurosci ; 18: 1378520, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660219

RESUMEN

Most sea urchin species are indirect developers, going through a larval stage called pluteus. The pluteus possesses its own nervous system, consisting mainly of the apical organ neurons (controlling metamorphosis and settlement) and ciliary band neurons (controlling swimming behavior and food collection). Additional neurons are located in various areas of the gut. In recent years, the molecular complexity of this apparently "simple" nervous system has become apparent, with at least 12 neuronal populations identified through scRNA-sequencing in the species Strongylocentrotus purpuratus. Among these, there is a cluster of neurosecretory cells that produce a thyrotropin-releasing hormone-type neuropeptide (TRHergic) and that are also photosensory (expressing a Go-Opsin). However, much less is known about the organization of the nervous system in other sea urchin species. The aim of this work was to thoroughly characterize the localization of the TRHergic cells from early pluteus to juvenile stages in the Mediterranean sea urchin species Paracentrotus lividus combining immunostaining and whole mount in situ hybridization. We also compared the localization of TRHergic cells in early plutei of two other sea urchin species, Arbacia lixula and Heliocidaris tuberculata. This work provides new information on the anatomy and development of the nervous system in sea urchins. Moreover, by comparing the molecular signature of the TRHergic cells in P. lividus and S. purpuratus, we have obtained new insights how TRH-type neuropeptide signaling evolved in relatively closely related species.

11.
Nat Ecol Evol ; 8(6): 1140-1153, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38622362

RESUMEN

Regulation of gene expression is arguably the main mechanism underlying the phenotypic diversity of tissues within and between species. Here we assembled an extensive transcriptomic dataset covering 8 tissues across 20 bilaterian species and performed analyses using a symmetric phylogeny that allowed the combined and parallel investigation of gene expression evolution between vertebrates and insects. We specifically focused on widely conserved ancestral genes, identifying strong cores of pan-bilaterian tissue-specific genes and even larger groups that diverged to define vertebrate and insect tissues. Systematic inferences of tissue-specificity gains and losses show that nearly half of all ancestral genes have been recruited into tissue-specific transcriptomes. This occurred during both ancient and, especially, recent bilaterian evolution, with several gains being associated with the emergence of unique phenotypes (for example, novel cell types). Such pervasive evolution of tissue specificity was linked to gene duplication coupled with expression specialization of one of the copies, revealing an unappreciated prolonged effect of whole-genome duplications on recent vertebrate evolution.


Asunto(s)
Evolución Molecular , Insectos , Vertebrados , Animales , Insectos/genética , Vertebrados/genética , Especificidad de Órganos , Transcriptoma , Filogenia
12.
Chemosphere ; 356: 141887, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583530

RESUMEN

Microplastics pose risks to marine organisms through ingestion, entanglement, and as carriers of toxic additives and environmental pollutants. Plastic pre-production pellet leachates have been shown to affect the development of sea urchins and, to some extent, mussels. The extent of those developmental effects on other animal phyla remains unknown. Here, we test the toxicity of environmental mixed nurdle samples and new PVC pellets for the embryonic development or asexual reproduction by regeneration of animals from all the major animal superphyla (Lophotrochozoa, Ecdysozoa, Deuterostomia and Cnidaria). Our results show diverse, concentration-dependent impacts in all the species sampled for new pellets, and for molluscs and deuterostomes for environmental samples. Embryo axial formation, cell specification and, specially, morphogenesis seem to be the main processes affected by plastic leachate exposure. Our study serves as a proof of principle for the potentially catastrophic effects that increasing plastic concentrations in the oceans and other ecosystems can have across animal populations from all major animal superphyla.


Asunto(s)
Invertebrados , Microplásticos , Plásticos , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Plásticos/toxicidad , Invertebrados/efectos de los fármacos , Microplásticos/toxicidad , Desarrollo Embrionario/efectos de los fármacos
13.
Cell Rep ; 43(3): 113791, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38428420

RESUMEN

The "ribbon," a structural arrangement in which Golgi stacks connect to each other, is considered to be restricted to vertebrate cells. Although ribbon disruption is linked to various human pathologies, its functional role in cellular processes remains unclear. In this study, we investigate the evolutionary origin of the Golgi ribbon. We observe a ribbon-like architecture in the cells of several metazoan taxa suggesting its early emergence in animal evolution predating the appearance of vertebrates. Supported by AlphaFold2 modeling, we propose that the evolution of Golgi reassembly and stacking protein (GRASP) binding by golgin tethers may have driven the joining of Golgi stacks resulting in the ribbon-like configuration. Additionally, we find that Golgi ribbon assembly is a shared developmental feature of deuterostomes, implying a role in embryogenesis. Overall, our study points to the functional significance of the Golgi ribbon beyond vertebrates and underscores the need for further investigations to unravel its elusive biological roles.


Asunto(s)
Aparato de Golgi , Proteínas de la Membrana , Animales , Humanos , Proteínas de la Membrana/metabolismo , Aparato de Golgi/metabolismo , Citoesqueleto/metabolismo , Células HeLa , Vertebrados
14.
BMC Evol Biol ; 13: 129, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23802544

RESUMEN

BACKGROUND: ParaHox and Hox genes are thought to have evolved from a common ancestral ProtoHox cluster or from tandem duplication prior to the divergence of cnidarians and bilaterians. Similar to Hox clusters, chordate ParaHox genes including Gsx, Xlox, and Cdx, are clustered and their expression exhibits temporal and spatial colinearity. In non-chordate animals, however, studies on the genomic organization of ParaHox genes are limited to only a few animal taxa. Hemichordates, such as the Enteropneust acorn worms, have been used to gain insights into the origins of chordate characters. In this study, we investigated the genomic organization and expression of ParaHox genes in the indirect developing hemichordate acorn worm Ptychodera flava. RESULTS: We found that P. flava contains an intact ParaHox cluster with a similar arrangement to that of chordates. The temporal expression order of the P. flava ParaHox genes is the same as that of the chordate ParaHox genes. During embryogenesis, the spatial expression pattern of PfCdx in the posterior endoderm represents a conserved feature similar to the expression of its orthologs in other animals. On the other hand, PfXlox and PfGsx show a novel expression pattern in the blastopore. Nevertheless, during metamorphosis, PfXlox and PfCdx are expressed in the endoderm in a spatially staggered pattern similar to the situation in chordates. CONCLUSIONS: Our study shows that P. flava ParaHox genes, despite forming an intact cluster, exhibit temporal colinearity but lose spatial colinearity during embryogenesis. During metamorphosis, partial spatial colinearity is retained in the transforming larva. These results strongly suggest that intact ParaHox gene clustering was retained in the deuterostome ancestor and is correlated with temporal colinearity.


Asunto(s)
Cordados no Vertebrados/genética , Evolución Molecular , Proteínas de Homeodominio/genética , Familia de Multigenes , Animales , Cordados no Vertebrados/clasificación , Genoma , Filogenia
15.
J Exp Zool B Mol Dev Evol ; 320(6): 368-74, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23703796

RESUMEN

Understanding the evolutionary history of deuterostomes requires elucidating the phylogenetic interrelationships amongst the constituent taxa. Although the monophyly and interrelationships among the three principal groups-the chordates, the echinoderms, and the hemichordates-are well established, as are the internal relationships among the echinoderm and chordate taxa, the interrelationships among the principal groups of hemichordates-the harrimaniid enteropneusts, the ptychoderid enteropneusts, and the pterobranchs-remain unresolved. Depending on the study some find enteropneusts paraphyletic with pterobranchs (e.g., Cephalodiscus) more closely related to the harrimaniid enteropneusts (e.g., Saccoglossus) than either are to the ptychoderid enteropneusts (e.g., Ptychodera), whereas other studies support a monophyletic Enteropneusta. To try and resolve between these two competing hypotheses, we turned to microRNAs, small ∼22 nt non-coding RNA genes that have been shown to shed insight into particularly difficult phylogenetic questions. Using deep sequencing we characterized the small RNA repertoires of two hemichordate species, Cephalodiscus hodgsoni and Ptychodera flava, and the crinoid echinoderm Antedon mediterranea, and combined our results with the described complements of the hemichordate Saccoglossus kowalevskii, the sea urchin Strongylocentrotus purpuratus, and the starfish Patiria miniata. Our data unambiguously support the monophyly of Enteropneusts as S. kowalevskii shares 12 miRNA sequences with P. flava that are not present in the C. hodgsoni or A. mediterranea libraries, and have never been reported from another metazoan taxon. Thus, these data resolve the phylogenetic position of pterobranchs, ultimately allowing for a better understanding of body plan evolution throughout the deuterostomes.


Asunto(s)
Cordados no Vertebrados/genética , Evolución Molecular , MicroARNs/genética , Animales , Secuencia de Bases , Cordados no Vertebrados/clasificación , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ARN
16.
Cells ; 12(17)2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37681865

RESUMEN

The ability to perceive and respond to light stimuli is fundamental not only for spatial vision but also to many other light-mediated interactions with the environment. In animals, light perception is performed by specific cells known as photoreceptors and, at molecular level, by a group of GPCRs known as opsins. Sea urchin larvae possess a group of photoreceptor cells (PRCs) deploying a Go-Opsin (Opsin3.2) which have been shown to share transcription factors and morphology with PRCs of the ciliary type, raising new questions related to how this sea urchin larva PRC is specified and whether it shares a common ancestor with ciliary PRCs or it if evolved independently through convergent evolution. To answer these questions, we combined immunohistochemistry and fluorescent in situ hybridization to investigate how the Opsin3.2 PRCs develop in the sea urchin Strongylocentrotus purpuratus larva. Subsequently, we applied single-cell transcriptomics to investigate the molecular signature of the Sp-Opsin3.2-expressing cells and show that they deploy an ancient regulatory program responsible for photoreceptors specification. Finally, we also discuss the possible functions of the Opsin3.2-positive cells based on their molecular fingerprint, and we suggest that they are involved in a variety of signaling pathways, including those entailing the thyrotropin-releasing hormone.


Asunto(s)
Opsinas , Transcriptoma , Animales , Opsinas/genética , Hibridación Fluorescente in Situ , Transcriptoma/genética , Larva/genética , Erizos de Mar/genética , Células Fotorreceptoras
17.
Mar Pollut Bull ; 196: 115604, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37820449

RESUMEN

Microplastic pollution is a major concern of our age, eliciting a range of effects on organisms including during embryonic development. Plastic preproduction pellets stunt the development of sea urchins through the leaching of teratogenic compounds. However, the effect of these leachates on adult sea urchins and their fertility is unknown. Here we investigate the effect of PVC leachates on the capacity to produce normal embryos, and demonstrate that adults kept in contaminated water still produce viable offspring. However, we observe a cumulative negative effect by continued exposure to highly polluted water: adult animals had lower counts and disturbed morphological profiles of immune cells, were under increased oxidative stress, and produced embryos less tolerant of contaminated environments. Our findings suggest that even in highly polluted areas, sea urchins are fertile, but that sublethal effects seen in the adults may lead to transgenerational effects that reduce developmental robustness of the embryos.


Asunto(s)
Paracentrotus , Animales , Plásticos/toxicidad , Contaminación del Agua , Desarrollo Embrionario , Sistema Inmunológico , Agua
18.
iScience ; 26(4): 106295, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36950121

RESUMEN

Sea urchins can detect light and move in relation to luminous stimuli despite lacking eyes. They presumably detect light through photoreceptor cells distributed on their body surface. However, there is currently no mechanistic explanation of how these animals can process light to detect visual stimuli and produce oriented movement. Here, we present a model of decentralized vision in echinoderms that includes all known processing stages, from photoreceptor cells to radial nerve neurons to neurons contained in the oral nerve ring encircling the mouth of the animals. In the model, light stimuli captured by photoreceptor cells produce neural activity in the radial nerve neurons. In turn, neural activity in the radial nerves is integrated in the oral nerve ring to produce a profile of neural activity reaching spatially across several ambulacra. This neural activity is readout to produce a model of movement. The model captures previously published data on the behavior of sea urchin Diadema africanum probed with a variety of physical stimuli. The specific pattern of neural connections used in the model makes testable predictions on the properties of single neurons and aggregate neural behavior in Diadema africanum and other echinoderms, offering a potential understanding of the mechanism of visual orientation in these animals.

19.
Sci Total Environ ; 864: 160901, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36526210

RESUMEN

Microplastics are now polluting all seas and, while studies have found numerous negative interactions between plastic pollution and marine animals, the effects on embryonic development are poorly understood. A potentially important source of developmental ecotoxicity comes from chemicals leached from plastic particles to the marine environment. Here we investigate the effects of leachates from new and beach-collected pellets on the embryonic and larval development of the sea urchin Strongylocentrotus purpuratus and demonstrate that exposure of developing embryos to these leachates elicits severe, consistent and treatment-specific developmental abnormalities including radialisation of the embryo and malformation of the skeleton, neural and immune cells. Using a multi-omics approach we define the developmental pathways disturbed upon exposure to PVC leachates and provide a mechanistic view that pinpoints cellular redox stress and energy production as drivers of phenotypic abnormalities following exposure to PVC leachates. Analysis of leachates identified high concentrations of zinc that are the likely cause of these observed defects. Our findings point to clear and specific detrimental effects of marine plastic pollution on the development of echinoderms, demonstrating that chemicals leached from plastic particles into sea water can produce strong developmental abnormalities via specific pathways, and therefore have the potential to impact on a wide range of organisms.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Animales , Plásticos/toxicidad , Plásticos/química , Erizos de Mar , Equinodermos , Microplásticos , Desarrollo Embrionario , Contaminantes Químicos del Agua/análisis
20.
Cell Genom ; 3(4): 100295, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37082140

RESUMEN

Sea urchins are emblematic models in developmental biology and display several characteristics that set them apart from other deuterostomes. To uncover the genomic cues that may underlie these specificities, we generated a chromosome-scale genome assembly for the sea urchin Paracentrotus lividus and an extensive gene expression and epigenetic profiles of its embryonic development. We found that, unlike vertebrates, sea urchins retained ancestral chromosomal linkages but underwent very fast intrachromosomal gene order mixing. We identified a burst of gene duplication in the echinoid lineage and showed that some of these expanded genes have been recruited in novel structures (water vascular system, Aristotle's lantern, and skeletogenic micromere lineage). Finally, we identified gene-regulatory modules conserved between sea urchins and chordates. Our results suggest that gene-regulatory networks controlling development can be conserved despite extensive gene order rearrangement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA