RESUMEN
OBJECTIVES: Neuropsychiatric symptoms (NPS) increase risk of developing dementia and are linked to various neurodegenerative conditions, including mild cognitive impairment (MCI due to Alzheimer's disease [AD]), cerebrovascular disease (CVD), and Parkinson's disease (PD). We explored the structural neural correlates of NPS cross-sectionally and longitudinally across various neurodegenerative diagnoses. METHODS: The study included individuals with MCI due to AD, (n = 74), CVD (n = 143), and PD (n = 137) at baseline, and at 2-years follow-up (MCI due to AD, n = 37, CVD n = 103, and PD n = 84). We assessed the severity of NPS using the Neuropsychiatric Inventory Questionnaire. For brain structure we included cortical thickness and subcortical volume of predefined regions of interest associated with corticolimbic and frontal-executive circuits. RESULTS: Cross-sectional analysis revealed significant negative correlations between appetite with both circuits in the MCI and CVD groups, while apathy was associated with these circuits in both the MCI and PD groups. Longitudinally, changes in apathy scores in the MCI group were negatively linked to the changes of the frontal-executive circuit. In the CVD group, changes in agitation and nighttime behavior were negatively associated with the corticolimbic and frontal-executive circuits, respectively. In the PD group, changes in disinhibition and apathy were positively associated with the corticolimbic and frontal-executive circuits, respectively. CONCLUSIONS: The observed correlations suggest that underlying pathological changes in the brain may contribute to alterations in neural activity associated with MBI. Notably, the difference between cross-sectional and longitudinal results indicates the necessity of conducting longitudinal studies for reproducible findings and drawing robust inferences.
Asunto(s)
Enfermedad de Alzheimer , Trastornos Cerebrovasculares , Disfunción Cognitiva , Enfermedad de Parkinson , Humanos , Estudios Transversales , Enfermedad de Parkinson/psicología , Estudios Longitudinales , Disfunción Cognitiva/psicología , Enfermedad de Alzheimer/psicología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Trastornos Cerebrovasculares/complicaciones , Pruebas NeuropsicológicasRESUMEN
BACKGROUND AND PURPOSE: The pathophysiology of Parkinson's disease (PD) negatively affects brain network connectivity, and in the presence of brain white matter hyperintensities (WMHs) cognitive and motor impairments seem to be aggravated. However, the role of WMHs in predicting accelerating symptom worsening remains controversial. The objective was to investigate whether location and segmental brain WMH burden at baseline predict cognitive and motor declines in PD after 2 years. METHODS: Ninety-eight older adults followed longitudinally from Ontario Neurodegenerative Diseases Research Initiative with PD of 3-8 years in duration were included. Percentages of WMH volumes at baseline were calculated by location (deep and periventricular) and by brain region (frontal, temporal, parietal, occipital lobes and basal ganglia + thalamus). Cognitive and motor changes were assessed from baseline to 2-year follow-up. Specifically, global cognition, attention, executive function, memory, visuospatial abilities and language were assessed as were motor symptoms evaluated using the Movement Disorder Society Unified Parkinson's Disease Rating Scale Part III, spatial-temporal gait variables, Freezing of Gait Questionnaire and Activities Specific Balance Confidence Scale. RESULTS: Regression analysis adjusted for potential confounders showed that total and periventricular WMHs at baseline predicted decline in global cognition (p < 0.05). Also, total WMH burden predicted the decline of executive function (p < 0.05). Occipital WMH volumes also predicted decline in global cognition, visuomotor attention and visuospatial memory declines (p < 0.05). WMH volumes at baseline did not predict motor decline. CONCLUSION: White matter hyperintensity burden at baseline predicted cognitive but not motor decline in early to mid-stage PD. The motor decline observed after 2 years in these older adults with PD is probably related to the primary neurodegenerative process than comorbid white matter pathology.
Asunto(s)
Disfunción Cognitiva , Trastornos Neurológicos de la Marcha , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Sustancia Blanca , Humanos , Anciano , Sustancia Blanca/patología , Enfermedades Neurodegenerativas/patología , Ontario , Imagen por Resonancia Magnética/métodos , Cognición/fisiología , Disfunción Cognitiva/patologíaRESUMEN
Understanding the neural underpinnings of major depressive disorder (MDD) and its treatment could improve treatment outcomes. So far, findings are variable and large sample replications scarce. We aimed to replicate and extend altered functional connectivity associated with MDD and pharmacotherapy outcomes in a large, multisite sample. Resting-state fMRI data were collected from 129 patients and 99 controls through the Canadian Biomarker Integration Network in Depression. Symptoms were assessed with the Montgomery-Åsberg Depression Rating Scale (MADRS). Connectivity was measured as correlations between four seeds (anterior and posterior cingulate cortex, insula and dorsolateral prefrontal cortex) and all other brain voxels. Partial least squares was used to compare connectivity prior to treatment between patients and controls, and between patients reaching remission (MADRS ≤ 10) early (within 8 weeks), late (within 16 weeks), or not at all. We replicated previous findings of altered connectivity in patients. In addition, baseline connectivity of the anterior/posterior cingulate and insula seeds differentiated patients with different treatment outcomes. The stability of these differences was established in the largest single-site subsample. Our replication and extension of altered connectivity highlighted previously reported and new differences between patients and controls, and revealed features that might predict remission prior to pharmacotherapy. Trial registration:ClinicalTrials.gov: NCT01655706.
Asunto(s)
Trastorno Depresivo Mayor , Encéfalo/diagnóstico por imagen , Canadá , Depresión , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/tratamiento farmacológico , Humanos , Imagen por Resonancia MagnéticaRESUMEN
BACKGROUND: Efforts to develop neuroimaging-based biomarkers in major depressive disorder (MDD), at the individual level, have been limited to date. As diagnostic criteria are currently symptom-based, MDD is conceptualized as a disorder rather than a disease with a known etiology; further, neural measures are often confounded by medication status and heterogeneous symptom states. METHODS: We describe a consortium to quantify neuroanatomical and neurofunctional heterogeneity via the dimensions of novel multivariate coordinate system (COORDINATE-MDD). Utilizing imaging harmonization and machine learning methods in a large cohort of medication-free, deeply phenotyped MDD participants, patterns of brain alteration are defined in replicable and neurobiologically-based dimensions and offer the potential to predict treatment response at the individual level. International datasets are being shared from multi-ethnic community populations, first episode and recurrent MDD, which are medication-free, in a current depressive episode with prospective longitudinal treatment outcomes and in remission. Neuroimaging data consist of de-identified, individual, structural MRI and resting-state functional MRI with additional positron emission tomography (PET) data at specific sites. State-of-the-art analytic methods include automated image processing for extraction of anatomical and functional imaging variables, statistical harmonization of imaging variables to account for site and scanner variations, and semi-supervised machine learning methods that identify dominant patterns associated with MDD from neural structure and function in healthy participants. RESULTS: We are applying an iterative process by defining the neural dimensions that characterise deeply phenotyped samples and then testing the dimensions in novel samples to assess specificity and reliability. Crucially, we aim to use machine learning methods to identify novel predictors of treatment response based on prospective longitudinal treatment outcome data, and we can externally validate the dimensions in fully independent sites. CONCLUSION: We describe the consortium, imaging protocols and analytics using preliminary results. Our findings thus far demonstrate how datasets across many sites can be harmonized and constructively pooled to enable execution of this large-scale project.
Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico , Estudios Prospectivos , Reproducibilidad de los Resultados , Encéfalo , Neuroimagen , Imagen por Resonancia Magnética/métodos , Inteligencia ArtificialRESUMEN
INTRODUCTION: Understanding synergies between neurodegenerative and cerebrovascular pathologies that modify dementia presentation represents an important knowledge gap. METHODS: This multi-site, longitudinal, observational cohort study recruited participants across prevalent neurodegenerative diseases and cerebrovascular disease and assessed participants comprehensively across modalities. We describe univariate and multivariate baseline features of the cohort and summarize recruitment, data collection, and curation processes. RESULTS: We enrolled 520 participants across five neurodegenerative and cerebrovascular diseases. Median age was 69 years, median Montreal Cognitive Assessment score was 25, median independence in activities of daily living was 100% for basic and 93% for instrumental activities. Spousal study partners predominated; participants were often male, White, and more educated. Milder disease stages predominated, yet cohorts reflect clinical presentation. DISCUSSION: Data will be shared with the global scientific community. Within-disease and disease-agnostic approaches are expected to identify markers of severity, progression, and therapy targets. Sampling characteristics also provide guidance for future study design.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedades Neurodegenerativas , Humanos , Masculino , Anciano , Enfermedades Neurodegenerativas/epidemiología , Actividades Cotidianas , Ontario , Estudios de Cohortes , Estudios LongitudinalesRESUMEN
Type 2 diabetes mellitus (T2DM) and hypertension are risk factors for cerebral small vessel disease (SVD); however, few studies have characterised their relationships with MRI-visible perivascular spaces (PVS). MRI was used to quantify deep (d) and periventricular (p) white matter hyperintensities (WMH), lacunes, PVS in the white matter (wmPVS) or basal ganglia (bgPVS), and diffusion metrics in white matter. Patients with T2DM had greater wmPVS volume and there were greater wmPVS volumes in patients with T2DM and hypertension together. Counterfactual moderated mediation models found indirect effects of T2DM on volumes of other SVD and diffusion markers that were mediated by wmPVS: pWMH, dWMH, periventricular lacunes, and deep lacunes, and progression of deep lacunes over 1 year, in patients with hypertension, but not in patients without hypertension. Studying the regulation of cortical perivascular fluid dynamics may reveal mechanisms that mediate the impact of T2DM on cerebral small vessels.
RESUMEN
BACKGROUND: Although previously thought to be asymptomatic, recent studies have suggested that magnetic resonance imaging-visible perivascular spaces (PVS) in the basal ganglia (BG-PVS) of patients with Parkinson's disease (PD) may be markers of motor disability and cognitive decline. In addition, a pathogenic and risk profile difference between small (≤3-mm diameter) and large (>3-mm diameter) PVS has been suggested. OBJECTIVE: The aim of this study was to examine associations between quantitative measures of large and small BG-PVS, global cognition, and motor/nonmotor features in a multicenter cohort of patients with PD. METHODS: We performed a cross-sectional study examining the association between large and small BG-PVS with Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) Parts I-IV and cognition (Montreal Cognitive Assessment) in 133 patients with PD enrolled in the Ontario Neurodegenerative Disease Research Initiative study. RESULTS: Patients with PD with small BG-PVS demonstrated an association with MDS-UPDRS Parts I (P = 0.008) and II (both P = 0.02), whereas patients with large BG-PVS demonstrated an association with MDS-UPDRS Parts III (P < 0.0001) and IV (P < 0.001). BG-PVS were not correlated with cognition. CONCLUSIONS: Small BG-PVS are associated with motor and nonmotor aspects of experiences in daily living, while large BG-PVS are associated with the motor symptoms and motor complications. © 2022 International Parkinson and Movement Disorder Society.
Asunto(s)
Personas con Discapacidad , Trastornos Motores , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Ganglios Basales/diagnóstico por imagen , Ganglios Basales/patología , Estudios Transversales , Humanos , Imagen por Resonancia Magnética , Enfermedades Neurodegenerativas/patología , Enfermedad de Parkinson/complicacionesRESUMEN
Quality assurance (QA) is crucial in longitudinal and/or multi-site studies, which involve the collection of data from a group of subjects over time and/or at different locations. It is important to regularly monitor the performance of the scanners over time and at different locations to detect and control for intrinsic differences (e.g., due to manufacturers) and changes in scanner performance (e.g., due to gradual component aging, software and/or hardware upgrades, etc.). As part of the Ontario Neurodegenerative Disease Research Initiative (ONDRI) and the Canadian Biomarker Integration Network in Depression (CAN-BIND), QA phantom scans were conducted approximately monthly for three to four years at 13 sites across Canada with 3T research MRI scanners. QA parameters were calculated for each scan using the functional Biomarker Imaging Research Network's (fBIRN) QA phantom and pipeline to capture between- and within-scanner variability. We also describe a QA protocol to measure the full-width-at-half-maximum (FWHM) of slice-wise point spread functions (PSF), used in conjunction with the fBIRN QA parameters. Variations in image resolution measured by the FWHM are a primary source of variance over time for many sites, as well as between sites and between manufacturers. We also identify an unexpected range of instabilities affecting individual slices in a number of scanners, which may amount to a substantial contribution of unexplained signal variance to their data. Finally, we identify a preliminary preprocessing approach to reduce this variance and/or alleviate the slice anomalies, and in a small human data set show that this change in preprocessing can have a significant impact on seed-based connectivity measurements for some individual subjects. We expect that other fMRI centres will find this approach to identifying and controlling scanner instabilities useful in similar studies.
Asunto(s)
Neuroimagen Funcional/normas , Imagen por Resonancia Magnética/normas , Estudios Multicéntricos como Asunto/normas , Garantía de la Calidad de Atención de Salud/normas , Adulto , Neuroimagen Funcional/instrumentación , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética/instrumentación , Fantasmas de Imagen , Análisis de Componente PrincipalRESUMEN
There is a growing interest in examining the wealth of data generated by fusing functional and structural imaging information sources. These approaches may have clinical utility in identifying disruptions in the brain networks that underlie major depressive disorder (MDD). We combined an existing software toolbox with a mathematically dense statistical method to produce a novel processing pipeline for the fast and easy implementation of data fusion analysis (FATCAT-awFC). The novel FATCAT-awFC pipeline was then utilized to identify connectivity (conventional functional, conventional structural and anatomically weighted functional connectivy) changes in MDD patients compared to healthy comparison participants (HC). Data were acquired from the Canadian Biomarker Integration Network for Depression (CAN-BIND-1) study. Large-scale resting-state networks were assessed. We found statistically significant anatomically-weighted functional connectivity (awFC) group differences in the default mode network and the ventral attention network, with a modest effect size (d < 0.4). Functional and structural connectivity seemed to overlap in significance between one region-pair within the default mode network. By combining structural and functional data, awFC served to heighten or reduce the magnitude of connectivity differences in various regions distinguishing MDD from HC. This method can help us more fully understand the interconnected nature of structural and functional connectivity as it relates to depression.
Asunto(s)
Encéfalo , Conectoma/métodos , Red en Modo Predeterminado , Trastorno Depresivo Mayor , Imagen de Difusión Tensora/métodos , Imagen por Resonancia Magnética/métodos , Red Nerviosa , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/fisiopatología , Red en Modo Predeterminado/diagnóstico por imagen , Red en Modo Predeterminado/patología , Red en Modo Predeterminado/fisiopatología , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/patología , Trastorno Depresivo Mayor/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/patología , Red Nerviosa/fisiopatologíaRESUMEN
Task-based functional neuroimaging methods are increasingly being used to identify biomarkers of treatment response in psychiatric disorders. To facilitate meaningful interpretation of neural correlates of tasks and their potential changes with treatment over time, understanding the reliability of the blood-oxygen-level dependent (BOLD) signal of such tasks is essential. We assessed test-retest reliability of an emotional conflict task in healthy participants collected as part of the Canadian Biomarker Integration Network in Depression. Data for 36 participants, scanned at three time points (weeks 0, 2, and 8) were analyzed, and intra-class correlation coefficients (ICC) were used to quantify reliability. We observed moderate reliability (median ICC values between 0.5 and 0.6), within occipital, parietal, and temporal regions, specifically for conditions of lower cognitive complexity, that is, face, congruent or incongruent trials. For these conditions, activation was also observed within frontal and sub-cortical regions, however, their reliability was poor (median ICC < 0.2). Clinically relevant prognostic markers based on task-based fMRI require high predictive accuracy at an individual level. For this to be achieved, reliability of BOLD responses needs to be high. We have shown that reliability of the BOLD response to an emotional conflict task in healthy individuals is moderate. Implications of these findings to further inform studies of treatment effects and biomarker discovery are discussed.
Asunto(s)
Conflicto Psicológico , Emociones/fisiología , Imagen por Resonancia Magnética/métodos , Adolescente , Adulto , Biomarcadores , Mapeo Encefálico , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Depresión/diagnóstico por imagen , Femenino , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Oxígeno/sangre , Valor Predictivo de las Pruebas , Desempeño Psicomotor/fisiología , Tiempo de Reacción , Reproducibilidad de los Resultados , Test de Stroop , Adulto JovenRESUMEN
Subtle changes in hippocampal volumes may occur during both physiological and pathophysiological processes in the human brain. Assessing hippocampal volumes manually is a time-consuming procedure, however, creating a need for automated segmentation methods that are both fast and reliable over time. Segmentation algorithms that employ deep convolutional neural networks (CNN) have emerged as a promising solution for large longitudinal neuroimaging studies. However, for these novel algorithms to be useful in clinical studies, the accuracy and reproducibility should be established on independent datasets. Here, we evaluate the performance of a CNN-based hippocampal segmentation algorithm that was developed by Thyreau and colleagues - Hippodeep. We compared its segmentation outputs to manual segmentation and FreeSurfer 6.0 in a sample of 200 healthy participants scanned repeatedly at seven sites across Canada, as part of the Canadian Biomarker Integration Network in Depression consortium. The algorithm demonstrated high levels of stability and reproducibility of volumetric measures across all time points compared to the other two techniques. Although more rigorous testing in clinical populations is necessary, this approach holds promise as a viable option for tracking volumetric changes in longitudinal neuroimaging studies.
Asunto(s)
Algoritmos , Aprendizaje Profundo , Hipocampo/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Neuroimagen/métodos , Adolescente , Adulto , Niño , Femenino , Voluntarios Sanos , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
Studies of clinical populations that combine MRI data generated at multiple sites are increasingly common. The Canadian Biomarker Integration Network in Depression (CAN-BIND; www.canbind.ca) is a national depression research program that includes multimodal neuroimaging collected at several sites across Canada. The purpose of the current paper is to provide detailed information on the imaging protocols used in a number of CAN-BIND studies. The CAN-BIND program implemented a series of platform-specific MRI protocols, including a suite of prescribed structural and functional MRI sequences supported by real-time monitoring for adherence and quality control. The imaging data are retained in an established informatics and databasing platform. Approximately 1300 participants are being recruited, including almost 1000 with depression. These include participants treated with antidepressant medications, transcranial magnetic stimulation, cognitive behavioural therapy and cognitive remediation therapy. Our ability to analyze the large number of imaging variables available may be limited by the sample size of the substudies. The CAN-BIND program includes a multimodal imaging database supported by extensive clinical, demographic, neuropsychological and biological data from people with major depression. It is a resource for Canadian investigators who are interested in understanding whether aspects of neuroimaging alone or in combination with other variables can predict the outcomes of various treatment modalities.
Asunto(s)
Protocolos Clínicos , Bases de Datos Factuales , Conjuntos de Datos como Asunto , Trastorno Depresivo/diagnóstico por imagen , Neuroimagen , Canadá , Trastorno Depresivo/terapia , HumanosRESUMEN
Concentrations of 11 PFASs were determined in muscle and whole fish for six species collected from Charleston, South Carolina (SC) for the assessment of potential health risks to humans and wildlife. Across all species and capture locations, total PFAS levels in whole fish were significantly higher than fillets by a factor of two- to three-fold. Mean ∑PFAS concentrations varied from 12.7 to 33.0â¯ng/g wet weight (ww) in whole fish and 6.2-12.7â¯ng/g ww in fillets. For individual whole fish, ∑PFASs ranged from 12.7â¯ng/g ww in striped mullet to 85.4â¯ng/g ww in spotted seatrout, and in fillets individual values ranged from 6.2â¯ng/g ww in striped mullet to 27.9â¯ng/g ww in spot. The most abundant compound in each species was perfluorooctane sulfonate (PFOS), comprising 25.5-69.6% of the ∑PFASs. Striped mullet had significantly lower relative amounts of PFOS compared to all other species and higher relative amounts of PFUnDA compared to Atlantic croaker, spotted seatrout, and spot. Unlike whole fish, PFAS levels in fillets varied significantly by location with higher ∑PFOS from the Ashley River than the Cooper River and Charleston Harbor, which reflects the levels of PFASs contamination in these systems. In whole fish, differences in relative concentrations of PFOS, PFNA, and PFDA occurred by capture location, suggestive of different sources. PFOS concentrations for southern flounder and spotted seatrout fillets were within the advisory range to limit fish consumption to 4 meals a month. PFOS levels exceeded screening values to protect mammals in 83% of whole fish examined and represent a potential risk to wildlife predators such as dolphins.
Asunto(s)
Ácidos Alcanesulfónicos , Monitoreo del Ambiente , Fluorocarburos , Alimentos Marinos/estadística & datos numéricos , Contaminantes Químicos del Agua , Animales , Humanos , Medición de Riesgo , South Carolina , Estados UnidosRESUMEN
Fish consumption is an important route of exposure to persistent organic pollutants (POPs) in dolphins as well as humans. In order to assess the potential risks associated with these contaminants, 39 whole fish and 37 fillets from fish representing species consumed by dolphins and humans captured from Charleston Harbor and tributaries, South Carolina, USA, were measured for a suite of POPs. Polychlorinated biphenyls (PCBs) were the predominant contaminant with concentrations ranging from 5.02 to 232.20â¯ng/g in whole fish and 5.42-131.95â¯ng/g in fillets (weight weight ww) followed by total organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs). Total POPs levels varied by location and species with general trends indicating significantly higher levels in fish from the Cooper (93.4â¯ng/g ww) and Ashley Rivers (56.2â¯ng/g ww) compared to Charleston Harbor (31.6â¯ng/g ww). Mullet and spot were found to have significantly higher PCBs, OCPs and total POPs, 2-3 times higher than red drum; mullet were also significantly higher in OCPs compared to seatrout. PCB concentrations in whole fish and fillets exceeded EPA human screening values for cancer risk in all fish sampled. For PCBs in fillets, all samples had values of maximum allowable meals per month that were less than the EPA, FDA guidelines for recommended fish meals per month, suggesting lower (more stringent) allowable fish meals per month. All fish exceeded PBDE wildlife values and all fish except two exceeded the level where 95% of the dolphin population would have tissue levels below the health effect threshold. Considering that POP concentrations in fish potentially consumed by humans exceed human health effect thresholds levels, consumption advisories should be considered as a prudent public health measure.
Asunto(s)
Contaminantes Ambientales , Hidrocarburos Clorados , Bifenilos Policlorados , Contaminantes Químicos del Agua , Animales , Peces , Éteres Difenilos Halogenados , Humanos , Medición de Riesgo , South Carolina , Estados UnidosRESUMEN
Kudoa inornata is a myxosporean parasite that develops in the somatic muscle of spotted seatrout Cynoscion nebulosus, an economically and ecologically important fish in estuaries and harbors in southeastern North America. In South Carolina (SC), USA, over 90% of wild adult spotted seatrout are infected. To inform potential mitigation strategies, we conducted 3 experiments using naïve sentinel seatrout and infectious stages of K. inornata naturally present in raw water from Charleston Harbor, SC, to determine (1) if K. inornata infection follows a seasonal pattern, and (2) how long it takes for myxospores to develop in fish muscle. Infection by K. inornata was determined by visual detection of myxospores in fish muscle squashes, and any visually negative samples were then assayed for K. inornata ribosomal DNA using novel parasite-specific PCR primers. We observed that K. inornata infection in seatrout followed a seasonal pattern, with high prevalence when water temperature was highest (27-31°C; July-September) and infections that were either covert (at ~13-15°C) or not detected (<13°C) at the lowest water temperatures in January-February. Myxospore development occurred within 476 degree-days, i.e. 2 wk in a typical SC summer. Infection was dependent on fish density, which limited presumptive actinospore dose. Our findings suggest that the life cycle of the parasite may be disrupted by preventing spore-rich seatrout carcasses (e.g. at angler cleaning stations) being thrown back into harbors and estuaries throughout the year.
Asunto(s)
Cnidarios/fisiología , Enfermedades de los Peces/parasitología , Peces/parasitología , Enfermedades Parasitarias en Animales/parasitología , Animales , Acuicultura , Humanos , Especies Centinela , Factores de TiempoRESUMEN
Six types of pathogenic endoparasites in an economically important fish, spotted seatrout Cynoscion nebulosus, were studied in order to test whether prevalence of infection and assemblage richness varied with season, host sex, host size, or host age. Fish were collected from South Carolina estuaries, USA, over 12 months (n = 216; total lengths 15-663 mm). They were screened histologically for presence of Henneguya cynoscioni (Myxozoa) and Cardicola spp. (Digenea) in the heart, Kudoa inornata (Myxozoa) in the skeletal muscle, Sinuolinea dimorpha (Myxozoa) in the urinary system, Ichthyophonus sp. (Mesomycetozoea) in the kidney, and an unidentified microsporidian in the liver. Prevalence of infection was 29.8, 38.6, 47.2, 41.2, 13.6, and 2.8%, respectively. All factors had significant, but varying effects on the parasites. Parasite infections were more prevalent in winter than other seasons for Cardicola spp. and H. cynoscioni, more prevalent in winter and spring for Ichthyophonus sp., and more prevalent in male fish than female fish for K. inornata, S. dimorpha, and Ichthyophonus. Prevalence of infection by the three myxosporeans and Cardicola spp. increased with fish length, whereas prevalence of Ichthyophonus increased with length among young fish, but decreased with length among older fish. None of the factors affected the liver microsporidian, although statistical power was low due to its rareness. Assemblage richness varied between 0 and 5, was greater during winter and in male fish, and increased with fish length and fish age. Our results demonstrate that spotted seatrout are commonly co-infected by multiple pathogenic endoparasites, suggesting these parasites likely play an import role in controlling fish population numbers.
Asunto(s)
Estuarios , Enfermedades de los Peces/parasitología , Peces/parasitología , Enfermedades Parasitarias en Animales/parasitología , Animales , Femenino , Enfermedades de los Peces/epidemiología , Masculino , Enfermedades Parasitarias en Animales/epidemiología , Estaciones del Año , South Carolina/epidemiologíaRESUMEN
Behavioral improvement within the first hour of training is commonly explained as procedural learning (i.e., strategy changes resulting from task familiarization). However, it may additionally reflect a rapid adjustment of the perceptual and/or attentional system in a goal-directed task. In support of this latter hypothesis, we show feature-specific gains in performance for groups of participants briefly trained to use either a spectral or spatial difference between 2 vowels presented simultaneously during a vowel identification task. In both groups, the neuromagnetic activity measured during the vowel identification task following training revealed source activity in auditory cortices, prefrontal, inferior parietal, and motor areas. More importantly, the contrast between the 2 groups revealed a striking double dissociation in which listeners trained on spectral or spatial cues showed higher source activity in ventral ("what") and dorsal ("where") brain areas, respectively. These feature-specific effects indicate that brief training can implicitly bias top-down processing to a trained acoustic cue and induce a rapid recalibration of the ventral and dorsal auditory streams during speech segregation and identification.
Asunto(s)
Atención/fisiología , Encéfalo/fisiología , Aprendizaje/fisiología , Percepción del Habla/fisiología , Estimulación Acústica , Adulto , Mapeo Encefálico , Señales (Psicología) , Humanos , Magnetoencefalografía , Masculino , Pruebas Neuropsicológicas , Patrones de Reconocimiento Fisiológico/fisiología , Acústica del Lenguaje , Adulto JovenRESUMEN
A year-round survey of American eels Anguilla rostrata was performed at 5 localities in South Carolina (SC), USA, 15 yr after the first infection by the nematode Anguillicoloides crassus was reported from Winyah Bay, SC. Infections by adult stages of A. crassus in the swimbladder lumen occurred with a prevalence of 45% (n = 479), a mean intensity (± SE) of 2.3 ± 0.2 worms per infected eel (range = 1-22), and a mean abundance of 2.0 ± 0.1 among all eels. Infections by larval stages of A. crassus in the swimbladder wall occurred with a prevalence, intensity, and abundance of 29%, 2.4 ± 0.3 (range = 1-15), and 0.7 ± 0.1, respectively (n = 471). Overall prevalence of the parasite (any stage) was 58%, with a mean intensity ± SE of 3.0 ± 0.2 and a mean abundance of 1.8 ± 0.2. Biomass of the adult parasite stage varied significantly with eel body length, but the direction of the effect depended on salinity. Prevalence and intensity of infection by adult nematodes varied by locality but not by eel total length, salinity, or season. Larval prevalence was significantly greater in the winter and spring and also differed among localities. The lack of seasonal effects on infection by the adult worm stage contrasts with studies from higher latitudes in North America and Europe and may be due to the warmer winter temperatures at southern latitudes. Significant variation in infection among localities reflects possible differences in abundance of intermediate and/or paratenic hosts. Overall, infection levels were higher than previous reports for eels in SC but comparable to more recent reports from other areas in North America.
Asunto(s)
Sacos Aéreos/parasitología , Anguilla , Enfermedades de los Peces/parasitología , Nematodos/clasificación , Infecciones por Nematodos/veterinaria , Animales , Animales Salvajes , Larva/parasitología , Infecciones por Nematodos/epidemiología , Infecciones por Nematodos/parasitología , Estaciones del Año , South Carolina/epidemiologíaRESUMEN
Evidence from preclinical animal models suggests that the stress-buffering function of the endocannabinoid (eCB) system may help protect against stress-related reductions in hippocampal volume, as is documented in major depressive disorder (MDD). However, stress exposure may also lead to dysregulation of this system. Thus, pathways from marked stress histories, such as childhood maltreatment (CM), to smaller hippocampal volumes and MDD in humans may depend on dysregulated versus intact eCB functioning. We examined whether the relation between MDD and peripheral eCB concentrations would vary as a function of CM history. Further, we examined whether eCBs moderate the relation of CM/MDD and hippocampal volume. Ninety-one adults with MDD and 62 healthy comparison participants (HCs) were recruited for a study from the Canadian Biomarker Integration Network in Depression program (CAN-BIND-04). The eCBs, anandamide (AEA) and 2-arachidonylglycerol (2-AG), were assessed from blood plasma. Severe CM history was assessed retrospectively via contextual interview. MDD was associated with eCBs, though not all associations were moderated by CM or in the direction expected. Specifically, MDD was associated with higher AEA compared to HCs regardless of CM history, a difference that could be attributed to psychotropic medications. MDD was also associated with higher 2-AG, but only for participants with CM. Consistent with hypotheses, we found lower left hippocampal volume in participants with versus without CM, but only for those with lower AEA, and not moderate or high AEA. Our study presents the first evidence in humans implicating eCBs in stress-related mechanisms involving reduced hippocampal volume in MDD.
Asunto(s)
Ácidos Araquidónicos , Trastorno Depresivo Mayor , Endocannabinoides , Glicéridos , Hipocampo , Alcamidas Poliinsaturadas , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/patología , Hipocampo/patología , Hipocampo/diagnóstico por imagen , Endocannabinoides/sangre , Endocannabinoides/metabolismo , Femenino , Masculino , Adulto , Ácidos Araquidónicos/sangre , Persona de Mediana Edad , Glicéridos/sangre , Imagen por Resonancia Magnética , Adultos Sobrevivientes del Maltrato a los Niños , Canadá , Tamaño de los Órganos , Estudios de Casos y ControlesRESUMEN
Neural network-level changes underlying symptom remission in major depressive disorder (MDD) are often studied from a single perspective. Multimodal approaches to assess neuropsychiatric disorders are evolving, as they offer richer information about brain networks. A FATCAT-awFC pipeline was developed to integrate a computationally intense data fusion method with a toolbox, to produce a faster and more intuitive pipeline for combining functional connectivity with structural connectivity (denoted as anatomically weighted functional connectivity (awFC)). Ninety-three participants from the Canadian Biomarker Integration Network for Depression study (CAN-BIND-1) were included. Patients with MDD were treated with 8 weeks of escitalopram and adjunctive aripiprazole for another 8 weeks. Between-group connectivity (SC, FC, awFC) comparisons contrasted remitters (REM) with non-remitters (NREM) at baseline and 8 weeks. Additionally, a longitudinal study analysis was performed to compare connectivity changes across time for REM, from baseline to week-8. Association between cognitive variables and connectivity were also assessed. REM were distinguished from NREM by lower awFC within the default mode, frontoparietal, and ventral attention networks. Compared to REM at baseline, REM at week-8 revealed increased awFC within the dorsal attention network and decreased awFC within the frontoparietal network. A medium effect size was observed for most results. AwFC in the frontoparietal network was associated with neurocognitive index and cognitive flexibility for the NREM group at week-8. In conclusion, the FATCAT-awFC pipeline has the benefit of providing insight on the 'full picture' of connectivity changes for REMs and NREMs while making for an easy intuitive approach.