Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2024): 20240494, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38864332

RESUMEN

Social organization, dispersal and fecundity coevolve, but whether they are genetically linked remains little known. Supergenes are prime candidates for coupling adaptive traits and mediating sex-specific trade-offs. Here, we test whether a supergene that controls social structure in Formica selysi also influences dispersal-related traits and fecundity within each sex. In this ant species, single-queen colonies contain only the ancestral supergene haplotype M and produce MM queens and M males, while multi-queen colonies contain the derived haplotype P and produce MP queens, PP queens and P males. By combining multiple experiments, we show that the M haplotype induces phenotypes with higher dispersal potential and higher fecundity in both sexes. Specifically, MM queens, MP queens and M males are more aerodynamic and more fecund than PP queens and P males, respectively. Differences between MP and PP queens from the same colonies reveal a direct genetic effect of the supergene on dispersal-related traits and fecundity. The derived haplotype P, associated with multi-queen colonies, produces queens and males with reduced dispersal abilities and lower fecundity. More broadly, similarities between the Formica and Solenopsis systems reveal that supergenes play a major role in linking behavioural, morphological and physiological traits associated with intraspecific social polymorphisms.


Asunto(s)
Distribución Animal , Hormigas , Fertilidad , Conducta Social , Animales , Hormigas/fisiología , Hormigas/genética , Masculino , Femenino , Haplotipos
2.
Mol Ecol ; : e17568, 2024 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-39491325

RESUMEN

Hymenopteran queens are collectively highly fecund, often long-lived individuals that undergo dramatic physiological changes after they mate and establish a nest. However, the degree to which these changes are conserved among species with different life histories is not well-defined. We conducted a comparative proteomic study investigating differences between reproductive stages (virgin, mated and established queens) of Apis mellifera, Bombus impatiens, B. terrestris and Lasius niger. We analysed haemolymph for all species except L. niger, for which a whole-body analysis was performed due to the small size of these queens. We identified conserved upregulation of proteins involved in anatomical and system development as queens transition to establishing a nest in all species except B. terrestris. We also identified conserved patterns of vitellogenin, vitellogenin receptor and immune-responsive protein (IRP)30, all of which are proteins typically associated with oviposition. However, expression patterns of other immune proteins, heat-shock proteins (HSPs), detoxification enzymes and antioxidant enzymes were more dissimilar, with some species exhibiting similar trends and co-occurrence through reproductive stages, while others exhibited variable or opposite patterns. These conserved and unique profiles likely in part reflect similarities and differences in selective pressure on reproductive stages of each species and may indicate differing abilities to respond to emergent pathogens or environmental change.

3.
Proc Biol Sci ; 290(1995): 20230216, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36987648

RESUMEN

Sperm competition is a pervasive evolutionary force that shapes sperm traits to maximize fertilization success. Indeed, it has been shown to increase sperm production in both vertebrates and invertebrates. However, sperm production is energetically costly, which may result in trade-offs among sperm traits. In eusocial hymenopterans, such as ants, mating dynamics impose unique selective pressures on ejaculate. Males are sperm limited: they enter adulthood with a fixed amount of sperm that will not be renewed. We explored whether sperm competition intensity was associated with sperm quantity and quality (i.e. sperm viability and DNA fragmentation) in nine Cataglyphis desert ants. Our results provide phylogenetically robust evidence that sperm competition is positively correlated with sperm production and sperm viability. However, it was unrelated to sperm DNA integrity, indicating the absence of a trade-off involving this trait. These findings underscore that sperm competition may strongly mould sperm traits and drive reproductive performance in eusocial Hymenoptera.


Asunto(s)
Hormigas , Animales , Masculino , Semen , Espermatozoides , Invertebrados , Inseminación
4.
Proc Biol Sci ; 290(2012): 20232093, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38052245

RESUMEN

Epigenetic alterations are a primary hallmark of ageing. In mammals, age-related epigenetic changes alter gene expression profiles, disrupt cellular homeostasis and physiological functions and, therefore, promote ageing. It remains unclear whether ageing is also driven by epigenetic mechanisms in invertebrates. Here, we used a pharmacological hypomethylating agent (RG108) to evaluate the effects of DNA methylation (DNAme) on lifespan in an insect-the bumblebee Bombus terrestris. RG108 extended mean lifespan by 43% and induced the differential methylation of genes involved in hallmarks of ageing, including DNA damage repair and chromatin organization. Furthermore, the longevity gene sirt1 was overexpressed following the treatment. Functional experiments demonstrated that SIRT1 protein activity was positively associated with lifespan. Overall, our study indicates that epigenetic mechanisms are conserved regulators of lifespan in both vertebrates and invertebrates and provides new insights into how DNAme is involved in the ageing process in insects.


Asunto(s)
Metilación de ADN , Longevidad , Animales , Abejas/genética , Longevidad/genética , Sirtuina 1/genética , Envejecimiento , Mamíferos/genética
5.
J Exp Biol ; 226(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36695637

RESUMEN

Over recent decades, increasing attention has been paid to how low-molecular-weight molecules affect thermal tolerance in animals. Although the disaccharide sugar trehalose is known to serve as a thermal protectant in unicellular organisms, nothing is known about its potential role in insects. In this study, we investigated the effect of trehalose on heat tolerance in the Namib desert ant, Ocymyrmex robustior, one of the most thermotolerant animals found in terrestrial ecosystems. First, we tested whether a trehalose-supplemented diet increased worker survival following exposure to heat stress. Second, we assessed the degree of protein damage by comparing protein aggregation levels for trehalose-supplemented workers and control workers. Third, we compared the expression levels of three genes involved in trehalose metabolism. We found that trehalose supplementation significantly enhanced worker heat tolerance, increased metabolic levels of trehalose and reduced protein aggregation under conditions of heat stress. Expression levels of the three genes varied in a manner that was consistent with the maintenance of trehalose in the hemolymph and tissues under conditions of heat stress. Altogether, these results suggest that increased trehalose concentration may help protect Namib desert ant individuals against heat stress. More generally, they highlight the role played by sugar metabolites in boosting tolerance in extremophiles.


Asunto(s)
Hormigas , Animales , Hormigas/genética , Hormigas/metabolismo , Trehalosa/metabolismo , Agregado de Proteínas , Ecosistema , Insectos/metabolismo , Calor
6.
J Therm Biol ; 111: 103397, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36585078

RESUMEN

Some ant species live in hot and arid environments, such as deserts and savannas. Worker polymorphism-variation in worker size and/or morphology within colonies-is adaptive in such ecosystems because it enhances resistance to heat stress and increases the efficiency of resource exploitation. However, species with small, monomorphic workers are also frequently found in these environments. How species with distinct worker size and degrees of polymorphism deal with such stressful environments remains poorly studied. We investigated the behavioral, physiological, and molecular adaptations that may enhance heat and desiccation tolerance in two sympatric species of Cataglyphis desert ants that differ dramatically in worker size and polymorphism: C. viatica is polymorphic, while C. cubica is small and monomorphic. We found that worker size, water content, water loss, and protein regulation play a key role in thermal resistance. (i) Large C. viatica workers better tolerated heat and desiccation stress than did small C. viatica or C. cubica workers. The former had greater water content and lost proportionally less water to evaporation under thermal stress. (ii) Despite their similar size distribution, workers of C. cubica are more heat tolerant than small C. viatica. This higher degree of tolerance likely stemmed from C. cubica workers having greater relative water content. (iii) Under thermal stress, small C. viatica workers metabolized larger quantities of fat and differentially expressed proteins involved in cellular homeostasis. In contrast, C. cubica downregulated the expression of numerous proteins involved in mitochondrial respiration likely reducing ROS accumulation. (iv) Consistent with these results, large C. viatica workers remained active throughout the day; C. cubica workers displayed a bimodal activity pattern, and small C. viatica remained poorly active outside the nest. Our study shows that ecologically similar ant species with different degrees of worker size polymorphism evolved distinct strategies for coping with extreme heat conditions.


Asunto(s)
Hormigas , Animales , Hormigas/fisiología , Ecosistema , Adaptación Fisiológica , Respuesta al Choque Térmico/fisiología , Agua/metabolismo
7.
Mol Ecol ; 30(21): 5503-5516, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34415643

RESUMEN

Over the last decade, increasing attention has been paid to the molecular adaptations used by organisms to cope with thermal stress. However, to date, few studies have focused on thermophilic species living in hot, arid climates. In this study, we explored molecular adaptations to heat stress in the thermophilic ant genus Cataglyphis, one of the world's most thermotolerant animal taxa. We compared heat tolerance and gene expression patterns across six Cataglyphis species from distinct phylogenetic groups that live in different habitats and experience different thermal regimes. We found that all six species had high heat tolerance levels with critical thermal maxima (CTmax ) ranging from 43℃ to 45℃ and a median lethal temperature (LT50) ranging from 44.5℃ to 46.8℃. Transcriptome analyses revealed that, although the number of differentially expressed genes varied widely for the six species (from 54 to 1118), many were also shared. Functional annotation of the differentially expressed and co-expressed genes showed that the biological pathways involved in heat-shock responses were similar among species and were associated with four major processes: the regulation of transcriptional machinery and DNA metabolism; the preservation of proteome stability; the elimination of toxic residues; and the maintenance of cellular integrity. Overall, our results suggest that molecular responses to heat stress have been evolutionarily conserved in the ant genus Cataglyphis and that their diversity may help workers withstand temperatures close to their physiological limits.


Asunto(s)
Hormigas , Aclimatación , Adaptación Fisiológica/genética , Animales , Hormigas/genética , Respuesta al Choque Térmico/genética , Calor , Humanos , Filogenia
8.
Mol Phylogenet Evol ; 155: 107016, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33242582

RESUMEN

Social parasitism, i.e. the parasitic dependence of a social species on another free-living social species, is one of the most intriguing phenomena in social insects. It has evolved to various levels, the most extreme form being inquiline social parasites which have lost the worker caste, and produce only male and female sexual offspring that are reared by the host worker force. The inquiline syndrome has been reported in 4 species within the ant genus Plagiolepis, in Europe. Whether inquiline social parasitism evolved once or multiple times within the genus remains however unknown. To address this question, we generated data for 5 inquiline social parasites - 3 species previously described and 2 unidentified species - and their free-living hosts from Europe, and we inferred their phylogenetic relationships. We tested Emery's rule, which predicts that inquiline social parasites and their hosts are close relatives. Our results show that inquiline parasitism evolved independently at least 5 times in the genus. Furthermore, we found that all inquilines were associated with one of the descendants of their most related free-living species, suggesting sympatric speciation is the main process leading to the emergence of the parasitic species, consistent with the stricter version of Emery's rule.


Asunto(s)
Hormigas/fisiología , Evolución Biológica , Interacciones Huésped-Parásitos , Parásitos/fisiología , Animales , Femenino , Masculino , Modelos Teóricos , Filogenia , Simbiosis
9.
Mol Ecol ; 29(3): 549-564, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31644831

RESUMEN

Over the last decade, genetic studies on social insects have revealed a remarkable diversity of unusual reproductive strategies, such as male clonality, female clonality, and social hybridogenesis. In this context, Cataglyphis desert ants are useful models because of their unique reproductive systems. In several species, queens conditionally use sexual reproduction and parthenogenesis to produce sterile workers and reproductive queens, respectively. In social hybridogenesis, two distinct genetic lineages coexist within a population, and workers result from mating between partners of different lineages; in contrast, queens and males are both produced asexually by parthenogenesis. Consequently, nonreproductive workers are all interlineage hybrids, whereas reproductives are all pure lineage individuals. Here, we characterized the reproductive systems of 11 species to investigate the distribution of the conditional use of sex and social hybridogenesis in Cataglyphis. We identified one new case in which sexual reproduction was conditionally used in the absence of dependent-lineage reproduction. We also discovered five new instances of social hybridogenesis. Based on our phylogenetic analyses, we inferred that both the conditional use of sex and social hybridogenesis independently evolved multiple times in the genus Cataglyphis.


Asunto(s)
Hormigas/genética , Artrópodos/genética , Conducta Animal/fisiología , Hibridación Genética/genética , Partenogénesis/genética , Animales , Femenino , Genotipo , Masculino , Filogenia , Reproducción/genética , Conducta Social
10.
Mol Ecol ; 28(12): 3073-3088, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31063272

RESUMEN

In most social Hymenoptera, a diploid egg develops into either a queen or a worker depending on environmental conditions. Hybridogenetic Cataglyphis ants display a bizarre genetic system, where queen-worker caste determination is primarily determined by genetic factors. In hybridogenetic populations, all workers are F1 hybrids of two distinct lineages, whereas new queens are nearly always pure-lineage individuals produced by clonal reproduction. The distribution and evolutionary history of these hybridogenetic populations have not yet been thoroughly analysed. Here, we studied the phylogeographic distribution of hybridogenetic populations in two closely related Spanish species: Cataglyphis humeya and Cataglyphis velox. Hybridogenesis has been previously documented in a locality of C. velox, but whether this system occurs elsewhere within the range of the two species was yet unknown. Queens and workers from 66 localities sampled across the range of the species were genotyped at 18 microsatellite markers to determine whether queens were produced by parthenogenesis and whether workers were hybrids of divergent lineages. Populations with F1 hybrid workers were identified by combining genetic, geographical and mating assortments data. In most populations of C. velox, workers were found to be hybrids of two divergent lineages. Workers were however produced via random mating in two marginal populations of C. velox, and in all populations studied of its sister species C. humeya. High-throughput sequencing data were obtained to confirm inferences based on microsatellites and to characterize relationships between populations. Our results revealed a complicated history of reticulate evolution that may account for the origin of hybridogenetic lineages in Cataglyphis.


Asunto(s)
Hormigas/genética , Hibridación Genética/genética , Partenogénesis/genética , Reproducción/genética , Animales , Hormigas/crecimiento & desarrollo , Diploidia , Femenino , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Filogeografía
11.
Artículo en Inglés | MEDLINE | ID: mdl-31414174

RESUMEN

Mating induces a range of physiological changes in female insects. In species that mate during several reproductive bouts throughout their life, mating causes an increase in oviposition, affects immune function, and decreases female lifespan and receptivity to further mating. Social Hymenoptera (ants, social bees, and wasps) are unique, since queens mate during a single reproductive effort at the beginning of their life. Their reproductive strategy is thus fundamentally different from that of other insects and one might expect the effects of mating on social Hymenoptera queens to be altered. We tested the effect of mating and multiple mating on the expression of six genes likely to be involved in post-mating changes, in queens of the ant Lasius niger L. We show that mating induces oviposition, and is followed by an up-regulation of vitellogenin and defensin expression. The expression of juvenile hormone esterase, insulin receptor 2, Cu-Zn superoxide dismutase 1, and prophenoloxidase is not significantly affected by mating. Queen-mating frequency did not affect the expression of the tested genes. Altogether, our results indicate that certain effects of mating on female insect physiology are generalized across species independent of their mating strategies, while others seem species specific.


Asunto(s)
Hormigas/fisiología , Defensinas/metabolismo , Conducta Sexual Animal/fisiología , Vitelogeninas/metabolismo , Animales , Femenino , Masculino , Reproducción/fisiología , Regulación hacia Arriba
12.
Proc Biol Sci ; 285(1893): 20182248, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30963911

RESUMEN

Ant queens mate on a single occasion early in life and store millions of sperm cells in their spermatheca. By carefully using stored sperm to fertilize eggs, they can produce large colonies of thousands of individuals. Queens can live for decades and their lifetime reproductive success is dependent on their ability to keep stored sperm alive. Maintaining high sperm viability requires metabolic energy which could trade-off with other costly processes such as immunity. We tested the impact of immune activation on the survival of stored sperm by prompting Lasius niger ant queens to mount a melanization response and subsequently measuring sperm viability in their spermatheca. Since queens face different challenges that influence energy allocation depending on the life stage of their colony, we measured sperm viability after immune activation in both newly mated queens (incipient) and in queens 1 year after mating (established). We found that immune activation reduced sperm viability in established queens but not in incipient queens, showing that the cost of immunity on sperm preservation depends on the life stage. Unexpectedly, established queens had significantly higher sperm viability in their spermatheca compared to incipient queens suggesting that ant queens are able to remove dead sperm from their spermatheca.


Asunto(s)
Hormigas/fisiología , Inmunidad Innata , Óvulo/inmunología , Espermatozoides/fisiología , Animales , Hormigas/inmunología , Femenino , Fertilización , Masculino , Óvulo/fisiología , Reproducción , Espermatozoides/inmunología
13.
J Exp Biol ; 221(Pt 6)2018 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-29444845

RESUMEN

Bacteria can damage sperm and thus reduce the reproductive success of both males and females; selection should therefore favour the evolution of antimicrobial protection. Eusocial hymenopterans might be particularly affected by such bacterial infections because of their mating ecology. In both sexes, mating is restricted to a short window early in the adult stage; there are no further chances to mate later in life. Males die shortly after mating, but queens use the acquired sperm to fertilise their eggs for years, sometimes decades. The reproductive success of both sexes is, thus, ultimately sperm-limited, which maintains strong selection for high sperm viability before and after storage. We tested the antibacterial activity of the contents of the male and female sperm-storage organs - the accessory testes and the spermatheca, respectively. As our study species, we used the bacterium Escherichia coli and the garden ant Lasius niger, whose queens can live for several decades. Our results provide the first empirical evidence that male and female sperm-storage organs display different antibacterial activity. While the contents of the accessory testes actually enhanced bacterial growth, the contents of the spermatheca strongly inhibited it. Furthermore, mating appears to activate the general immune system in queens. However, antimicrobial activity in both the spermatheca and the control tissue (head-thorax homogenate) declined rapidly post-mating, consistent with a trade-off between immunity and reproduction. Overall, this study suggests that ejaculates undergo an immune 'flush' at the time of mating, allowing storage of sperm cells free of bacteria.


Asunto(s)
Antibacterianos/metabolismo , Hormigas/fisiología , Espermatozoides/fisiología , Animales , Antibacterianos/aislamiento & purificación , Femenino , Masculino
14.
Biol Lett ; 14(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29343564

RESUMEN

Caste determination in social Hymenoptera (whether a female egg develops into a reproductive queen or a sterile worker) is a remarkable example of phenotypic plasticity where females with highly similar genomes exhibit striking differences in morphology and behaviour. This phenotypic dichotomy is typically influenced by environmental factors. However, recent studies have revealed a strong caste-genotype association in hybridogenetic ants: workers are all interlineage hybrids while queens are all purebred, suggesting that female caste fate is genetically determined. Using the hybridogenetic ant Cataglyphis mauritanica, we show that under laboratory conditions, purebred offspring develop into reproductive queens but occasionally give rise to workers. Moreover, while hybrids typically become workers, juvenile hormone treatment can switch their developmental pathway to the reproductive caste. These results indicate that phenotypic plasticity has been retained in an ant with a strong caste-genotype association, despite its lack of expression in natural conditions.


Asunto(s)
Adaptación Fisiológica , Hormigas/genética , Animales , Conducta Animal/fisiología , Femenino , Genotipo
15.
Annu Rev Entomol ; 62: 305-321, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-27860520

RESUMEN

Unlike most desert-dwelling animals, Cataglyphis ants do not attempt to escape the heat; rather, they apply their impressive heat tolerance to avoid competitors and predators. This thermally defined niche has promoted a range of adaptations both at the individual and colony levels. We have also recently discovered that within the genus Cataglyphis there are incredibly diverse social systems, modes of reproduction, and dispersal, prompting the tantalizing question of whether social diversity may also be a consequence of the harsh environment within which we find these charismatic ants. Here we review recent advances regarding the physiological, behavioral, life-history, colony, and ecological characteristics of Cataglyphis and consider perspectives on future research that will build our understanding of organic adaptive responses to desertification.


Asunto(s)
Hormigas/fisiología , Evolución Biológica , Clima Desértico , Adaptación Biológica , Animales , Conducta Social , Termotolerancia
16.
Horm Behav ; 96: 116-121, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28919556

RESUMEN

In vertebrates and invertebrates, oxytocin/vasopressin-like peptides modulate a variety of behaviors. The recent discovery of the gene and receptor sequences of inotocin, the insect ortholog of oxytocin/vasopressin, opens new opportunities for understanding the role of this peptide family in regulating behaviors in the most populated class of living animals. Ants live in highly organized colonies. Once a year, they produce future queens that soon leave the nest to mate and found new colonies. During the first months of their lives, ant queens display a sequence of behaviors ranging from copulation and social interactions to violent fighting. In order to investigate the potential roles of inotocin in shaping queen behavior, we measured gene expression of the inotocin receptor in the heads of Lasius niger ant queens at different points in time. The highest levels of expression occurred early in queen life when they experience crowded conditions in their mother nests and soon thereafter set out to mate. Inotocin could thus be involved in regulating social and reproductive behaviors as reported in other animals. While oxytocin and vasopressin are also involved in aggression in mammals, we found no direct link between these behaviors and inotocin receptor expression in L. niger. Our study provides a first glimpse into the roles the inotocin receptor might play in regulating important processes in ant physiology and behavior. Further studies are needed to understand the molecular function of this complex signaling system in more detail.


Asunto(s)
Hormigas/genética , Receptores de Oxitocina/genética , Animales , Hormigas/fisiología , Conducta Animal/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Oxitocina/genética , Reproducción/fisiología , Caracteres Sexuales , Conducta Sexual Animal/fisiología , Conducta Social
17.
J Exp Biol ; 220(Pt 9): 1721-1728, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28232398

RESUMEN

In ectotherms, high temperatures impose physical limits, impeding activity. Exposure to high heat levels causes various deleterious and lethal effects, including protein misfolding and denaturation. Thermophilic ectotherms have evolved various ways to increase macromolecular stability and cope with elevated body temperatures; these include the high constitutive expression of molecular chaperones. In this study, we investigated the effect of moderate to severe heat shock (37-45°C) on survival, heat hardening, protein damage and the expression of five heat tolerance-related genes (hsc70-4 h1, hsc70-4 h2, hsp83, hsc70-5 and hsf1) in two closely related Cataglyphis ants that occur in distinct habitats. Our results show that the highly thermophilic Sahara ant Cataglyphis bombycina constitutively expresses HSC70 at higher levels, but has lower induced expression of heat tolerance-related genes in response to heat shock, as compared with the more mesophilic Cataglyphis mauritanica found in the Atlas Mountains. As a result, C. bombycina demonstrates increased protein stability when exposed to acute heat stress but is less disposed to acquiring induced thermotolerance via heat hardening. These results provide further insight into the evolutionary plasticity of the hsp gene expression system and subsequent physiological adaptations in thermophilous desert insects to adapt to harsh environmental conditions.


Asunto(s)
Hormigas/fisiología , Proteínas de Choque Térmico/metabolismo , Proteoma , Adaptación Fisiológica , Animales , Hormigas/genética , Hormigas/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Calor , Estrés Fisiológico
18.
Biol Lett ; 12(11)2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27852941

RESUMEN

The reproductive division of labour between queen and worker castes in social insects is a defining characteristic of eusociality and a classic example of phenotypic plasticity. Whether social insect larvae develop into queens or workers has long been thought to be determined by environmental cues, i.e. larvae are developmentally totipotent. Contrary to this paradigm, several recent studies have revealed that caste is determined by genotype in some ant species, but whether this is restricted to just a few exceptional species is still unclear. Here, we show that the Mediterranean harvester ant Messor barbarus possesses an unusual reproductive system, in which the female castes are genetically determined. Using both nuclear and mitochondrial data, we show that Iberian populations have two distinct, cryptic lineages. Workers are always inter-lineage hybrids whereas queens are always produced from pure-lineage matings. The results suggest that genetic caste determination may be more widespread in ants than previously thought, and that further investigation in other species is needed to understand the frequency and evolution of this remarkable reproductive system.


Asunto(s)
Hormigas/genética , Animales , Hormigas/fisiología , ADN Mitocondrial/genética , Femenino , Hibridación Genética , Masculino , Repeticiones de Microsatélite , Fenotipo , Portugal , España
19.
Biol Lett ; 11(2): 20140971, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25652221

RESUMEN

We report a remarkable pattern of incongruence between nuclear and mitochondrial variations in a social insect, the desert ant Cataglyphis hispanica. This species reproduces by social hybridogenesis. In all populations, two distinct genetic lineages coexist; non-reproductive workers develop from hybrid crosses between the lineages, whereas reproductive offspring (males and new queens) are typically produced asexually by parthenogenesis. Genetic analyses based on nuclear markers revealed that the two lineages remain highly differentiated despite constant hybridization for worker production. Here, we show that, in contrast with nuclear DNA, mitochondrial DNA (mtDNA) does not recover the two lineages as monophyletic. Rather, mitochondrial haplotypes cluster according to their geographical origin. We argue that this cytonuclear incongruence stems from introgression of mtDNA among lineages, and review the mechanisms likely to explain this pattern under social hybridogenesis.


Asunto(s)
Hormigas/genética , ADN Mitocondrial/genética , Hibridación Genética , Partenogénesis/genética , Animales , Femenino , Haplotipos , Masculino , Mitocondrias/genética , Reproducción/genética
20.
Proc Biol Sci ; 281(1774): 20132396, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24225458

RESUMEN

Recently, a unique case of hybridogenesis at a social level was reported in local populations of the desert ants Cataglyphis. Queens mate with males originating from a different genetic lineage than their own to produce hybrid workers, but they use parthenogenesis for the production of reproductive offspring (males and females). As a result, non-reproductive workers are all inter-lineage hybrids, whereas the sexual line is purely maternal. Here, we show that this unorthodox reproductive system occurs in all populations of the ant Cataglyphis hispanica. Remarkably, workers are hybrids of the same two genetic lineages along a 400 km transect crossing the whole distribution range of the species. These results indicate that social hybridogenesis in C. hispanica allows their maintenance over time and across a large geographical scale of two highly divergent genetic lineages, despite their constant hybridization. The widespread distribution of social hybridogenesis in C. hispanica supports that this reproductive strategy has been evolutionarily conserved over a long period.


Asunto(s)
Hormigas/genética , Jerarquia Social , Hibridación Genética , Conducta Sexual Animal , Animales , Femenino , Genotipo , Masculino , Datos de Secuencia Molecular , Partenogénesis , Filogenia , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA