Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Invertebr Pathol ; 195: 107834, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36244507

RESUMEN

Hemipteran pests are among the most important threats to agricultural production. Losses associated with these insects result from both feeding-associated damage and the transmission of plant pathogens by some species. Key among hemipteran pests of agricultural importance are stink bugs, whitefly, aphids and psyllids. While bacteria provide an excellent resource for identification of environmentally benign pesticidal proteins for use against pest insects, relatively few with activity against hemipteran species have been identified. In this comprehensive review including the patent literature, we describe physiological features unique to Hemiptera that may restrict the toxicity of bacterial pesticidal proteins, provide an overview of Hemiptera-active pesticidal proteins and associated structural classes, and summarize biotechnological strategies used for optimization of toxicity against target hemipteran species.


Asunto(s)
Bacillus thuringiensis , Hemípteros , Heterópteros , Plaguicidas , Animales , Bacillus thuringiensis/fisiología , Proteínas Bacterianas/química , Control Biológico de Vectores , Insectos
2.
BMC Biol ; 18(1): 90, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32698880

RESUMEN

BACKGROUND: Although native to North America, the invasion of the aphid-like grape phylloxera Daktulosphaira vitifoliae across the globe altered the course of grape cultivation. For the past 150 years, viticulture relied on grafting-resistant North American Vitis species as rootstocks, thereby limiting genetic stocks tolerant to other stressors such as pathogens and climate change. Limited understanding of the insect genetics resulted in successive outbreaks across the globe when rootstocks failed. Here we report the 294-Mb genome of D. vitifoliae as a basic tool to understand host plant manipulation, nutritional endosymbiosis, and enhance global viticulture. RESULTS: Using a combination of genome, RNA, and population resequencing, we found grape phylloxera showed high duplication rates since its common ancestor with aphids, but similarity in most metabolic genes, despite lacking obligate nutritional symbioses and feeding from parenchyma. Similarly, no enrichment occurred in development genes in relation to viviparity. However, phylloxera evolved > 2700 unique genes that resemble putative effectors and are active during feeding. Population sequencing revealed the global invasion began from the upper Mississippi River in North America, spread to Europe and from there to the rest of the world. CONCLUSIONS: The grape phylloxera genome reveals genetic architecture relative to the evolution of nutritional endosymbiosis, viviparity, and herbivory. The extraordinary expansion in effector genes also suggests novel adaptations to plant feeding and how insects induce complex plant phenotypes, for instance galls. Finally, our understanding of the origin of this invasive species and its genome provide genetics resources to alleviate rootstock bottlenecks restricting the advancement of viticulture.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Genoma de los Insectos/fisiología , Hemípteros/genética , Adaptación Biológica/genética , Distribución Animal , Animales , Especies Introducidas , Vitis
4.
BMC Biotechnol ; 18(1): 50, 2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30134885

RESUMEN

BACKGROUND: Arthropod-borne diseases remain a leading cause of human morbidity and mortality and exact an enormous toll on global agriculture. The practice of insecticide-based control is fraught with issues of excessive cost, human and environmental toxicity, unwanted impact on beneficial insects and selection of resistant insects. Efforts to modulate insects to eliminate pathogen transmission have gained some traction and remain future options for disease control. RESULTS: Here, we report a paratransgenic strategy that targets transmission of Xylella fastidiosa, a leading bacterial pathogen of agriculture, by the Glassy-Winged Sharpshooter (GWSS), Homalodisca vitripennis. Earlier, we identified Pantoea agglomerans, a bacterial symbiont of the GWSS as the paratransgenic control agent. We genetically engineered P. agglomerans to express two antimicrobial peptides (AMP)-melittin and scorpine-like molecule (SLM). Melittin and SLM were chosen as the effector molecules based on in vitro studies, which showed that both molecules have anti-Xylella activity at concentrations that did not kill P. agglomerans. Using these AMP-expressing strains of P. agglomerans, we demonstrated disruption of pathogen transmission from insects to grape plants below detectable levels. CONCLUSION: This is the first report of halting pathogen transmission from paratransgenically modified insects. It is also the first demonstration of paratransgenic control in an agriculturally important insect vector.


Asunto(s)
Antiinfecciosos/metabolismo , Hemípteros/microbiología , Pantoea/genética , Enfermedades de las Plantas/microbiología , Vitis/microbiología , Xylella/genética , Animales , Técnicas de Transferencia de Gen , Insectos Vectores , Meliteno/metabolismo , Venenos de Escorpión/metabolismo
5.
BMC Biotechnol ; 15: 59, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26099939

RESUMEN

BACKGROUND: As an alternative to chemical pesticides, paratransgenesis relies on transformation of symbiotic bacteria of an arthropod vector to deliver molecules that disrupt pathogen transmission. For over a decade paratransgenesis has remained a laboratory-based endeavor owing to regulatory concerns regarding introduction of transformed microorganisms into the environment. To facilitate field application of paratransgenic strategies, risk mitigation approaches that address environmental contamination and gene spread must be developed. RESULTS: Using biopolymer manipulation, we introduce a novel microencapsulation platform for containment and targeted delivery of engineered bacteria to the gut of a disease-transmitting arthropod. We demonstrate the first proof of principle of targeted delivery of EPA-approved Pantoea agglomerans E325 in a paratransgenic system to control spread of Pierce's Disease by glassy-winged sharpshooters, (Homalodisca vitripennis) under simulated field conditions. Engineered microcapsules may address regulatory concerns regarding containment of recombinant bacteria and environmental spread of foreign genetic material and may represent an important step in translating paratransgenic science beyond the lab and into the field. CONCLUSIONS: We present, for the first time, a microencapsulation strategy to deliver recombinant bacteria to an insect and demonstrate targeted release of bacteria into the physiologically relevant region of the insect gut. This is a first step toward addressing concerns related to field application of recombinant bacteria. Engineered microparticles may decrease environmental contamination, horizontal gene transfer and competition with native species by acting as a barrier between recombinant bacteria and the environment.


Asunto(s)
Bacterias/genética , Técnicas de Transferencia de Gen , Pantoea/genética , Bacterias/patogenicidad , Composición de Medicamentos
6.
Genes (Basel) ; 12(3)2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809132

RESUMEN

Insect pest control by RNA interference (RNAi)-mediated gene expression knockdown can be undermined by many factors, including small sequence differences between double-stranded RNA (dsRNA) and the target gene. It can also be compromised by effects that are independent of the dsRNA sequence on non-target organisms (known as sequence-non-specific effects). This study investigated the species-specificity of RNAi in plant sap-feeding hemipteran pests. We first demonstrated sequence-non-specific suppression of aphid feeding by dsRNA at dietary concentrations ≥0.5 µg µL-1. Then we quantified the expression of NUC (nuclease) genes in insects administered homologous dsRNA (with perfect sequence identity to the target species) or heterologous dsRNA (generated against a related gene of non-identical sequence in a different insect species). For the aphids Acyrthosiphon pisum and Myzus persicae, significantly reduced NUC expression was obtained with the homologous but not heterologous dsRNA at 0.2 µg µL-1, despite high dsNUC sequence identity. Follow-up experiments demonstrated significantly reduced expression of NUC genes in the whitefly Bemisia tabaci and mealybug Planococcus maritimus administered homologous dsNUCs, but not heterologous aphid dsNUCs. Our demonstration of inefficient expression knockdown by heterologous dsRNA in these insects suggests that maximal dsRNA sequence identity is required for RNAi targeting of related pest species, and that heterologous dsRNAs at appropriate concentrations may not be a major risk to non-target sap-feeding hemipterans.


Asunto(s)
Hemípteros/genética , ARN Bicatenario/genética , Animales , Áfidos/genética , Técnicas de Silenciamiento del Gen/métodos , Proteínas de Insectos/genética , Interferencia de ARN/fisiología
7.
Insects ; 11(11)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126451

RESUMEN

The grape mealybug Pseudococcus maritimus (Ehrhorn, 1900) (Hemiptera: Pseudococcidae) is a significant pest of grapevines (Vitis spp.) and a vector of disease-causing grape viruses, linked to its feeding on phloem sap. The management of this pest is constrained by the lack of naturally occurring resistance traits in Vitis. Here, we obtained proof of concept that RNA interference (RNAi) using double-stranded RNA (dsRNA) molecules against essential genes for phloem sap feeding can depress insect survival. The genes of interest code for an aquaporin (AQP) and a sucrase (SUC) that are required for osmoregulation in related phloem sap-feeding hemipteran insects (aphids and whiteflies). In parallel, we investigated the grape mealybug genes coding non-specific nucleases (NUC), which reduce RNAi efficacy by degrading administered dsRNA. Homologs of AQP and SUC with experimentally validated function in aphids, together with NUC, were identified in the published transcriptome of the citrus mealybug Planococcus citri by phylogenetic analysis, and sequences of the candidate genes were obtained for Ps. maritimus by PCR with degenerate primers. Using this first sequence information for Ps. maritimus, dsRNA was prepared and administered to the insects via an artificial diet. The treatment comprising dsRNA against AQP, SUC and NUC significantly increased insect mortality over three days, relative to dsRNA-free controls. The dsRNA constructs for AQP and NUC were predicted, from sequence analysis to have some activity against other mealybugs, but none of the three dsRNA constructs have predicted activity against aphids. This study provides the basis to develop in planta RNAi strategies against Ps. maritimus and other mealybug pests of grapevines.

8.
Ecol Evol ; 8(8): 4312-4327, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29721300

RESUMEN

Transcriptomes of dissected brains from virgin alate and dealate mated queens from polygyne fire ants (Solenopsis invicta) were analyzed and compared. Thirteen genes were upregulated in mated queen brain, and nine were downregulated. While many of the regulated genes were either uncharacterized or noncoding RNAs, those annotated genes included two hexamerin proteins, astakine neuropeptide, serine proteases, and serine protease inhibitors. We found that for select differentially expressed genes in the brain, changes in gene expression were most likely driven by the changes in physiological state (i.e., age, nutritional status, or dominance rank) or in social environment (released from influence of primer pheromone). This was concluded because virgins that dealated after being separated from mated queens showed similar patterns of gene expression in the brain as those of mated queens for hexamerin 1, astakine, and XR_850909. Abaecin (XR_850725), however, appears upregulated only after mating. Therefore, our findings contribute to distinguish how specific gene networks, especially those influenced by queen primer pheromone, are regulated in queen ants. Additionally, to identify brain signaling pathways, we mined the fire ant genome and compiled a list of G-protein-coupled receptors (GPCRs). The expression level of GPCRs and other genes in the "genetic toolkit" in the brains of virgin alates and mated dealate queens is reported.

9.
J Insect Physiol ; 103: 10-17, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28974456

RESUMEN

All insects, including pest species, are colonized by microorganisms, variously located in the gut and within insect tissues. Manipulation of these microbial partners can reduce the pest status of insects, either by modifying insect traits (e.g. altering the host range or tolerance of abiotic conditions, reducing insect competence to vector disease agents) or by reducing fitness. Strategies utilizing heterologous microorganisms (i.e. derived from different insect species) and genetically-modified microbial symbionts are under development, particularly in relation to insect vectors of human disease agents. There is also the potential to target microorganisms absolutely required by the insect, resulting in insect mortality or suppression of insect growth or fecundity. This latter approach is particularly valuable for insect pests that depend on nutrients from symbiotic microorganisms to supplement their nutritionally-inadequate diet, e.g. insects feeding through the life cycle on vertebrate blood (cimicid bugs, anopluran lice, tsetse flies), plant sap (whiteflies, aphids, psyllids, planthoppers, leafhoppers/sharpshooters) and sound wood (various xylophagous beetles and some termites). Further research will facilitate implementation of these novel insect pest control strategies, particularly to ensure specificity of control agents to the pest insect without dissemination of bio-active compounds, novel microorganisms or their genes into the wider environment.


Asunto(s)
Control de Insectos/métodos , Insectos/microbiología , Animales , Insectos/parasitología , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA