Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443166

RESUMEN

Fusion-associated small transmembrane (FAST) proteins are a diverse family of nonstructural viral proteins. Once expressed on the plasma membrane of infected cells, they drive fusion with neighboring cells, increasing viral spread and pathogenicity. Unlike viral fusogens with tall ectodomains that pull two membranes together through conformational changes, FAST proteins have short fusogenic ectodomains that cannot bridge the intermembrane gap between neighboring cells. One orthoreovirus FAST protein, p14, has been shown to hijack the actin cytoskeleton to drive cell-cell fusion, but the actin adaptor-binding motif identified in p14 is not found in any other FAST protein. Here, we report that an evolutionarily divergent FAST protein, p22 from aquareovirus, also hijacks the actin cytoskeleton but does so through different adaptor proteins, Intersectin-1 and Cdc42, that trigger N-WASP-mediated branched actin assembly. We show that despite using different pathways, the cytoplasmic tail of p22 can replace that of p14 to create a potent chimeric fusogen, suggesting they are modular and play similar functional roles. When we directly couple p22 with the parallel filament nucleator formin instead of the branched actin nucleation promoting factor N-WASP, its ability to drive fusion is maintained, suggesting that localized mechanical pressure on the plasma membrane coupled to a membrane-disruptive ectodomain is sufficient to drive cell-cell fusion. This work points to a common biophysical strategy used by FAST proteins to push rather than pull membranes together to drive fusion, one that may be harnessed by other short fusogens responsible for physiological cell-cell fusion.


Asunto(s)
Actinas/metabolismo , Proteínas de la Fusión de la Membrana/metabolismo , Fusión de Membrana/fisiología , Citoesqueleto de Actina/metabolismo , Secuencia de Aminoácidos/genética , Animales , Evolución Biológica , Fusión Celular/métodos , Línea Celular , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Evolución Molecular , Humanos , Orthoreovirus/genética , Unión Proteica/genética , Reoviridae/genética , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/metabolismo , Proteínas no Estructurales Virales/metabolismo , Internalización del Virus
2.
Proc Natl Acad Sci U S A ; 116(44): 22196-22204, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31611382

RESUMEN

Filopodia are actin-filled protrusions employed by cells to interact with their environment. Filopodia formation in Amoebozoa and Metazoa requires the phylogenetically diverse MyTH4-FERM (MF) myosins DdMyo7 and Myo10, respectively. While Myo10 is known to form antiparallel dimers, DdMyo7 lacks a coiled-coil domain in its proximal tail region, raising the question of how such divergent motors perform the same function. Here, it is shown that the DdMyo7 lever arm plays a role in both autoinhibition and function while the proximal tail region can mediate weak dimerization, and is proposed to be working in cooperation with the C-terminal MF domain to promote partner-mediated dimerization. Additionally, a forced dimer of the DdMyo7 motor is found to weakly rescue filopodia formation, further highlighting the importance of the C-terminal MF domain. Thus, weak dimerization activity of the DdMyo7 proximal tail allows for sensitive regulation of myosin activity to prevent inappropriate activation of filopodia formation. The results reveal that the principles of MF myosin-based filopodia formation are conserved via divergent mechanisms for dimerization.


Asunto(s)
Miosinas/metabolismo , Proteínas Protozoarias/metabolismo , Seudópodos/metabolismo , Dictyostelium , Miosinas/química , Dominios Proteicos , Multimerización de Proteína , Proteínas Protozoarias/química
3.
Proc Natl Acad Sci U S A ; 113(50): E8059-E8068, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27911821

RESUMEN

The formation of filopodia in Metazoa and Amoebozoa requires the activity of myosin 10 (Myo10) in mammalian cells and of Dictyostelium unconventional myosin 7 (DdMyo7) in the social amoeba Dictyostelium However, the exact roles of these MyTH4-FERM myosins (myosin tail homology 4-band 4.1, ezrin, radixin, moesin; MF) in the initiation and elongation of filopodia are not well defined and may reflect conserved functions among phylogenetically diverse MF myosins. Phylogenetic analysis of MF myosin domains suggests that a single ancestral MF myosin existed with a structure similar to DdMyo7, which has two MF domains, and that subsequent duplications in the metazoan lineage produced its functional homolog Myo10. The essential functional features of the DdMyo7 myosin were identified using quantitative live-cell imaging to characterize the ability of various mutants to rescue filopod formation in myo7-null cells. The two MF domains were found to function redundantly in filopod formation with the C-terminal FERM domain regulating both the number of filopodia and their elongation velocity. DdMyo7 mutants consisting solely of the motor plus a single MyTH4 domain were found to be capable of rescuing the formation of filopodia, establishing the minimal elements necessary for the function of this myosin. Interestingly, a chimeric myosin with the Myo10 MF domain fused to the DdMyo7 motor also was capable of rescuing filopod formation in the myo7-null mutant, supporting fundamental functional conservation between these two distant myosins. Together, these findings reveal that MF myosins have an ancient and conserved role in filopod formation.


Asunto(s)
Dictyostelium/genética , Dictyostelium/metabolismo , Evolución Molecular , Miosinas/genética , Miosinas/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Seudópodos/genética , Seudópodos/metabolismo , Amebozoos/genética , Amebozoos/metabolismo , Animales , Secuencia Conservada , Dominios FERM/genética , Técnicas de Inactivación de Genes , Genes Protozoarios , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/metabolismo , Miosinas/química , Filogenia , Proteínas Protozoarias/química , Seudópodos/química
4.
J Cell Sci ; 128(11): 2191-201, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25908857

RESUMEN

The microtubule-based molecular motor dynein is essential for proper neuronal morphogenesis. Dynein activity is regulated by cofactors, and the role(s) of these cofactors in shaping neuronal structure are still being elucidated. Using Drosophila melanogaster, we reveal that the loss of the dynein cofactor NudE results in abnormal dendrite arborization. Our data show that NudE associates with Golgi outposts, which mediate dendrite branching, suggesting that NudE normally influences dendrite patterning by regulating Golgi outpost transport. Neurons lacking NudE also have increased microtubule dynamics, reflecting a change in microtubule stability that is likely to also contribute to abnormal dendrite growth and branching. These defects in dendritogenesis are rescued by elevating levels of Lis1, another dynein cofactor that interacts with NudE as part of a tripartite complex. Our data further show that the NudE C-terminus is dispensable for dendrite morphogenesis and is likely to modulate NudE activity. We propose that a key function of NudE is to enhance an interaction between Lis1 and dynein that is crucial for motor activity and dendrite architecture.


Asunto(s)
Proteínas Portadoras/metabolismo , Dendritas/metabolismo , Dendritas/fisiología , Proteínas de Drosophila/metabolismo , Dineínas/metabolismo , Animales , Animales Modificados Genéticamente , Drosophila melanogaster/metabolismo , Aparato de Golgi/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo
5.
Elife ; 102021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34042588

RESUMEN

Filopodia are thin, actin-based structures that cells use to interact with their environments. Filopodia initiation requires a suite of conserved proteins but the mechanism remains poorly understood. The actin polymerase VASP and a MyTH-FERM (MF) myosin, DdMyo7 in amoeba, are essential for filopodia initiation. DdMyo7 is localized to dynamic regions of the actin-rich cortex. Analysis of VASP mutants and treatment of cells with anti-actin drugs shows that myosin recruitment and activation in Dictyostelium requires localized VASP-dependent actin polymerization. Targeting of DdMyo7 to the cortex alone is not sufficient for filopodia initiation; VASP activity is also required. The actin regulator locally produces a cortical actin network that activates myosin and together they shape the actin network to promote extension of parallel bundles of actin during filopodia formation. This work reveals how filopodia initiation requires close collaboration between an actin-binding protein, the state of the actin cytoskeleton and MF myosin activity.


Asunto(s)
Actinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Dictyostelium/enzimología , Proteínas de Microfilamentos/metabolismo , Miosinas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Protozoarias/metabolismo , Seudópodos/enzimología , Actinas/genética , Moléculas de Adhesión Celular/genética , Dictyostelium/genética , Proteínas de Microfilamentos/genética , Movimiento , Miosinas/genética , Fosfoproteínas/genética , Proteínas Protozoarias/genética , Seudópodos/genética , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA