Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 37(25): 6132-6148, 2017 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-28559377

RESUMEN

Hyperexcitable neuronal networks are mechanistically linked to the pathologic and clinical features of Alzheimer's disease (AD). Astrocytes are a primary defense against hyperexcitability, but their functional phenotype during AD is poorly understood. Here, we found that activated astrocytes in the 5xFAD mouse model were strongly associated with proteolysis of the protein phosphatase calcineurin (CN) and the elevated expression of the CN-dependent transcription factor nuclear factor of activated T cells 4 (NFAT4). Intrahippocampal injections of adeno-associated virus vectors containing the astrocyte-specific promoter Gfa2 and the NFAT inhibitory peptide VIVIT reduced signs of glutamate-mediated hyperexcitability in 5xFAD mice, measured in vivo with microelectrode arrays and ex vivo brain slices, using whole-cell voltage clamp. VIVIT treatment in 5xFAD mice led to increased expression of the astrocytic glutamate transporter GLT-1 and to attenuated changes in dendrite morphology, synaptic strength, and NMDAR-dependent responses. The results reveal astrocytic CN/NFAT4 as a key pathologic mechanism for driving glutamate dysregulation and neuronal hyperactivity during AD.SIGNIFICANCE STATEMENT Neuronal hyperexcitability and excitotoxicity are increasingly recognized as important mechanisms for neurodegeneration and dementia associated with Alzheimer's disease (AD). Astrocytes are profoundly activated during AD and may lose their capacity to regulate excitotoxic glutamate levels. Here, we show that a highly active calcineurin (CN) phosphatase fragment and its substrate transcription factor, nuclear factor of activated T cells (NFAT4), appear in astrocytes in direct proportion to the extent of astrocyte activation. The blockade of astrocytic CN/NFAT signaling in a common mouse model of AD, using adeno-associated virus vectors normalized glutamate signaling dynamics, increased astrocytic glutamate transporter levels and alleviated multiple signs of neuronal hyperexcitability. The results suggest that astrocyte activation drives hyperexcitability during AD through a mechanism involving aberrant CN/NFAT signaling and impaired glutamate transport.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/genética , Astrocitos , Calcineurina/genética , Factores de Transcripción NFATC/genética , Red Nerviosa/fisiopatología , Péptidos beta-Amiloides/metabolismo , Animales , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/metabolismo , Potenciales Postsinápticos Excitadores , Silenciador del Gen , Hipocampo/metabolismo , Aprendizaje por Laberinto , Ratones , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/efectos de los fármacos
2.
Neuroreport ; 35(10): 673-678, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38813906

RESUMEN

Hyperactivation of the Ca2+/calmodulin-dependent phosphatase calcineurin (CN) is observed in reactive astrocytes associated with neuroinflammation and progressive degenerative diseases, like Alzheimer's disease. Apart from key transcription factors (e.g. nuclear factor of activated t cells and nuclear factor-κB) very few other CN-dependent pathways have been studied in astrocytes. The hemichannel protein, connexin 43 (Cx43) is found at high levels in astrocytes and contains a CN-sensitive Ser residue near its carboxy terminus. CN-dependent dephosphorylation of Cx43 has been reported in primary astrocytes treated with injurious stimuli, but much remains unknown about CN/Cx43 interactions in the context of neuroinflammation and disease. Western blots were used to assess total Cx43 and dephosphorylated Cx43 subtypes in rat embryonic primary astrocytes treated with a hyperactive CN fragment (ΔCN, via adenovirus), or with a proinflammatory cytokine cocktail. Under similar treatment conditions, an ethidium bromide (EtBr) uptake assay was used to assess membrane permeability. Effects of ΔCN and cytokines were tested in the presence or absence of the CN inhibitor, cyclosporin A. A connexin inhibitor, carbenoxolone was also used in EtBr assays to assess the involvement of connexins in membrane permeability. Treatment with ΔCN or cytokines increased dephosphorylated Cx43 levels in conjunction with increased membrane permeability (elevated EtBr uptake). Effects of ΔCN or cytokine treatment were blocked by cyclosporine A. Treatment-induced changes in EtBr uptake were also inhibited by carbenoxolone. The results suggest that Cx43 hemichannels could be an important mechanism through which astrocytic CN disrupts neurologic function associated with neurodegenerative disease.


Asunto(s)
Astrocitos , Calcineurina , Permeabilidad de la Membrana Celular , Conexina 43 , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Conexina 43/metabolismo , Animales , Fosforilación/efectos de los fármacos , Calcineurina/metabolismo , Ratas , Permeabilidad de la Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/fisiología , Células Cultivadas , Ratas Sprague-Dawley
3.
Aging Cell ; 20(7): e13416, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34117818

RESUMEN

Inhibition of the protein phosphatase calcineurin (CN) ameliorates pathophysiologic and cognitive changes in aging rodents and mice with aging-related Alzheimer's disease (AD)-like pathology. However, concerns over adverse effects have slowed the transition of common CN-inhibiting drugs to the clinic for the treatment of AD and AD-related disorders. Targeting substrates of CN, like the nuclear factor of activated T cells (NFATs), has been suggested as an alternative, safer approach to CN inhibitors. However, small chemical inhibitors of NFATs have only rarely been described. Here, we investigate a newly developed neuroprotective hydroxyquinoline derivative (Q134R) that suppresses NFAT signaling, without inhibiting CN activity. Q134R partially inhibited NFAT activity in primary rat astrocytes, but did not prevent CN-mediated dephosphorylation of a non-NFAT target, either in vivo, or in vitro. Acute (≤1 week) oral delivery of Q134R to APP/PS1 (12 months old) or wild-type mice (3-4 months old) infused with oligomeric Aß peptides led to improved Y maze performance. Chronic (≥3 months) oral delivery of Q134R appeared to be safe, and, in fact, promoted survival in wild-type (WT) mice when given for many months beyond middle age. Finally, chronic delivery of Q134R to APP/PS1 mice during the early stages of amyloid pathology (i.e., between 6 and 9 months) tended to reduce signs of glial reactivity, prevented the upregulation of astrocytic NFAT4, and ameliorated deficits in synaptic strength and plasticity, without noticeably altering parenchymal Aß plaque pathology. The results suggest that Q134R is a promising drug for treating AD and aging-related disorders.


Asunto(s)
Enfermedad de Alzheimer/genética , Factores de Transcripción NFATC/antagonistas & inhibidores , Placa Amiloide/fisiopatología , Animales , Modelos Animales de Enfermedad , Ratones
4.
PLoS One ; 7(5): e38170, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22666474

RESUMEN

The role of tumor necrosis factor α (TNF) in neural function has been investigated extensively in several neurodegenerative conditions, but rarely in brain aging, where cognitive and physiologic changes are milder and more variable. Here, we show that protein levels for TNF receptor 1 (TNFR1) are significantly elevated in the hippocampus relative to TNF receptor 2 (TNFR2) in aged (22 months) but not young adult (6 months) Fischer 344 rats. To determine if altered TNF/TNFR1 interactions contribute to key brain aging biomarkers, aged rats received chronic (4-6 week) intracranial infusions of XPro1595: a soluble dominant negative TNF that preferentially inhibits TNFR1 signaling. Aged rats treated with XPro1595 showed improved Morris Water Maze performance, reduced microglial activation, reduced susceptibility to hippocampal long-term depression, increased protein levels for the GluR1 type glutamate receptor, and lower L-type voltage sensitive Ca(2+) channel (VSCC) activity in hippocampal CA1 neurons. The results suggest that diverse functional changes associated with brain aging may arise, in part, from selective alterations in TNF signaling.


Asunto(s)
Envejecimiento/metabolismo , Calcio/metabolismo , Sinapsis/metabolismo , Factor de Necrosis Tumoral alfa/química , Factor de Necrosis Tumoral alfa/metabolismo , Envejecimiento/fisiología , Animales , Conducta Animal/efectos de los fármacos , Canales de Calcio Tipo L/metabolismo , Trastorno Depresivo/metabolismo , Trastorno Depresivo/patología , Trastorno Depresivo/fisiopatología , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/fisiología , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Fenotipo , Ratas , Ratas Endogámicas F344 , Receptores AMPA/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Solubilidad , Sinapsis/efectos de los fármacos , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
5.
Neurosci Lett ; 469(3): 365-9, 2010 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-20026181

RESUMEN

In astrocytes, the Ca(2+)-dependent protein phosphatase calcineurin (CN) strongly regulates neuro-immune/inflammatory cascades through activation of the transcription factor, nuclear factor of activated T cells (NFAT). While primary cell cultures provide a useful model system for investigating astrocytic CN/NFAT signaling, variable results may arise both within and across labs because of differences in culture conditions. Here, we determined the extent to which serum and cell confluency affect basal and evoked astrocytic NFAT activity in primary cortical astrocyte cultures. Cells were grown to either approximately 50% or >90% confluency, pre-loaded with an NFAT-luciferase reporter construct, and maintained for 16 h in medium with or without 10% fetal bovine serum (FBS). NFAT-dependent luciferase expression was then measured 5h after treatment with vehicle alone to assess basal NFAT activity, or with Ca(2+) mobilizers and IL-1 beta to assess evoked activity. The results revealed significantly higher levels of basal NFAT activity in FBS-containing medium, regardless of cell confluency. Conversely, evoked NFAT activation was significantly lower in serum-containing medium, with an even greater inhibition observed in confluent cultures. Application of 10% FBS to serum-free astrocyte cultures quickly evoked a roughly seven-fold increase in NFAT activity that was significantly reduced by co-delivery of neutralizing agents for IL-1 beta, TNFalpha, and/or IFN gamma, suggesting that serum occludes evoked NFAT activation through a cytokine-based mechanism. Together, the results demonstrate that the presence of serum and cell confluency have a major impact on CN/NFAT signaling in primary astrocyte cultures and therefore must be taken into consideration when using this model system.


Asunto(s)
Astrocitos/metabolismo , Factores de Transcripción NFATC/metabolismo , Suero/metabolismo , Animales , Bovinos , Técnicas de Cultivo de Célula , Células Cultivadas , Citocinas/antagonistas & inhibidores , Citocinas/metabolismo , Interferón gamma/antagonistas & inhibidores , Interferón gamma/metabolismo , Interleucina-1beta/antagonistas & inhibidores , Interleucina-1beta/metabolismo , Luciferasas/metabolismo , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo
6.
J Biol Chem ; 283(32): 21953-64, 2008 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-18541537

RESUMEN

Interleukin-1beta (IL-1beta) and the Ca(2+)/calmodulin-dependent protein phosphatase, calcineurin, have each been shown to play an important role in neuroinflammation. However, whether these signaling molecules interact to coordinate immune/inflammatory processes and neurodegeneration has not been investigated. Here, we show that exogenous application of IL-1beta (10 ng/ml) recruited calcineurin/NFAT (nuclear factor of activated T cells) activation in primary astrocyte-enriched cultures within minutes, through a pathway involving IL-1 receptors and L-type Ca(2+) channels. Adenovirus-mediated delivery of the NFAT inhibitor, VIVIT, suppressed the IL-1beta-dependent induction of several inflammatory mediators and/or markers of astrocyte activation, including tumor necrosis factor alpha, granulocyte/macrophage colony-stimulating factor, and vimentin. Expression of an activated form of calcineurin in one set of astrocyte cultures also triggered the release of factors that, in turn, stimulated NFAT activity in a second set of "naive" astrocytes. This effect was prevented when calcineurin-expressing cultures co-expressed VIVIT, suggesting that the calcineurin/NFAT pathway coordinates positive feedback signaling between astrocytes. In the presence of astrocytes and neurons, 48-h delivery of IL-1beta was associated with several excitotoxic effects, including NMDA receptor-dependent neuronal death, elevated extracellular glutamate, and hyperexcitable synaptic activity. Each of these effects were reversed or ameliorated by targeted delivery of VIVIT to astrocytes. IL-1beta also caused an NFAT-dependent reduction in excitatory amino acid transporter levels, indicating a possible mechanism for IL-1beta-mediated excitotoxicity. Taken together, the results have potentially important implications for the propagation and maintenance of neuroinflammatory signaling processes associated with many neurodegenerative conditions and diseases.


Asunto(s)
Astrocitos/metabolismo , Calcineurina/metabolismo , Interleucina-1beta/metabolismo , Factores de Transcripción NFATC/metabolismo , Neuronas/metabolismo , Transducción de Señal , Animales , Astrocitos/citología , Astrocitos/efectos de los fármacos , Canales de Calcio Tipo L/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Retroalimentación Fisiológica , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Transporte de Glutamato en la Membrana Plasmática/genética , Interleucina-1beta/farmacología , Neuronas/efectos de los fármacos , Transporte de Proteínas , Proteínas/genética , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA