Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Subcell Biochem ; 103: 31-44, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37120463

RESUMEN

Age-related chronic inflammation is characterized as the unresolved low-grade inflammatory process underlying the ageing process and various age-related diseases. In this chapter, we review the age-related changes in the oxidative stress-sensitive pro-inflammatory NF-κB signaling pathways causally linked with chronic inflammation during ageing based on senoinflammation schema. We describe various age-related dysregulated pro- and anti-inflammatory cytokines, chemokines, and senescence-associated secretory phenotype (SASP), and alterations of inflammasome, specialized pro-resolving lipid mediators (SPM), and autophagy as major players in the chronic inflammatory intracellular signaling network. A better understanding of the molecular, cellular, and systemic mechanisms involved in chronic inflammation in the ageing process would provide further insights into the potential anti-inflammatory strategies.


Asunto(s)
Senescencia Celular , Transducción de Señal , Humanos , Estrés Oxidativo , Inflamación/metabolismo , FN-kappa B/metabolismo
2.
Biol Pharm Bull ; 46(4): 552-562, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37005299

RESUMEN

Aging leads to the functional decline of an organism, which is associated with age and sex. To understand the functional change of kidneys depending on age and sex, we carried out a transcriptome analysis using RNA sequencing (RNA-Seq) data from rat kidneys. Four differentially expressed gene (DEG) sets were generated according to age and sex, and Gene Ontology analysis and overlapping analysis of Kyoto Encyclopedia of Genes and Genomes pathways were performed for the DEG sets. Through the analysis, we revealed that inflammation- and extracellular matrix (ECM)-related genes and pathways were upregulated in both males and females during aging, which was more prominent in old males than in old females. Furthermore, quantitative real-time PCR analysis confirmed that the expression of tumor necrosis factor (TNF) signaling-related genes, Birc3, Socs3, and Tnfrsf1b, and ECM-related genes, Cd44, Col3a1, and Col5a2, which showed that the genes were markedly upregulated in males and not females during aging. Also, hematoxylin-eosin (H&E) staining for histological analysis showed that renal damage was highly shown in old males rather than old females. In conclusion, in the rat kidney, the genes involved in TNF signaling and ECM accumulation are upregulated in males more than in females during aging. These results suggest that the upregulation of the genes may have a higher contribution to age-related kidney inflammation and fibrosis in males than in females.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Animales , Masculino , Ratas , Matriz Extracelular/genética , Inflamación , Riñón , Factores de Necrosis Tumoral/metabolismo , Caracteres Sexuales
3.
Int J Mol Sci ; 23(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35628280

RESUMEN

(1) Background: Soyasapogenol C (SSC), a derivative of soyasapogenol B (SSB), is specifically found high in many fermented soybean (Glycine max) products, including Cheonggukjang (in Korean). However, the biological activities for preventing and treating hepatic steatosis, and the precise underlying mechanisms of SSC, remain to be explored. (2) Methods: A novel SANDA (structural screening, ADMET prediction, network pharmacology, docking validation, and activity evaluation) methodology was used to examine whether SSC exerts hepatoprotective effects in silico and in vitro. (3) Results: SSC had better ADMET characteristics and a higher binding affinity with predicted targets chosen from network pathway analysis than SSB. SSC induced the phosphorylation of AMP-activated protein kinase (AMPK) and stimulated the nuclear translocation of peroxisome proliferator-activated receptor alpha (PPARα), further enhancing PPAR response element (PPRE) binding activity in HepG2 cells. Concurrently, SSC significantly inhibited triglyceride accumulation, which was associated with the suppression of lipogenesis genes and the enhancement of fatty acid oxidation gene expression in HepG2 cells. (4) Conclusions: Soyasapogenol C, discovered using a novel SANDA methodology from fermented soybean, is a novel AMPK/PPARα dual activator that is effective against hepatic steatosis. Dietary supplementation with soyasapogenol C may prevent the development of hepatic steatosis and other diseases associated with fat accumulation in the liver.


Asunto(s)
Hígado Graso , Alimentos Fermentados , Proteínas Quinasas Activadas por AMP/metabolismo , Hígado Graso/metabolismo , PPAR alfa/metabolismo , Glycine max/metabolismo
4.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36077427

RESUMEN

BACKGROUND: Circadian rhythm is associated with the aging process and sex differences; however, how age and sex can change circadian regulation systems remains unclear. Thus, we aimed to evaluate age- and sex-related changes in gene expression and identify sex-specific target molecules that can regulate aging. METHODS: Rat livers were categorized into four groups, namely, young male, old male, young female, and old female, and the expression of several genes involved in the regulation of the circadian rhythm was confirmed by in silico and in vitro studies. RESULTS: Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses showed that the expression of genes related to circadian rhythms changed more in males than in females during liver aging. In addition, differentially expressed gene analysis and quantitative real-time polymerase chain reaction/western blotting analysis revealed that Nr1d1 and Nr1d2 expression was upregulated in males during liver aging. Furthermore, the expression of other circadian genes, such as Arntl, Clock, Cry1/2, Per1/2, and Rora/c, decreased in males during liver aging; however, these genes showed various gene expression patterns in females during liver aging. CONCLUSIONS: Age-related elevation of Nr1d1/2 downregulates the expression of other circadian genes in males, but not females, during liver aging. Consequently, age-related upregulation of Nr1d1/2 may play a more crucial role in the change in circadian rhythms in males than in females during liver aging.


Asunto(s)
Envejecimiento , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Caracteres Sexuales , Envejecimiento/genética , Envejecimiento/patología , Animales , Relojes Circadianos , Ritmo Circadiano/genética , Femenino , Hígado , Masculino , Ratas , Factores de Transcripción
5.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34639224

RESUMEN

BACKGROUND: Cheonggukjang is a traditional fermented soybean paste that is mostly consumed in Korea. However, the biological activities of Cheonggukjang specific compounds have not been studied. Thus, we aimed to discover a novel dual agonist for PPARα/γ from dietary sources such as Cheonggukjang specific volatile compounds and explore the potential role of PPARα/γ dual agonists using in vitro and in silico tools. METHODS: A total of 35 compounds were selected from non-fermented and fermented soybean products cultured with Bacillus subtilis, namely Cheonggukjang, for analysis by in vitro and in silico studies. RESULTS: Molecular docking results showed that 1,3-diphenyl-2-propanone (DPP) had the lowest docking score for activating PPARα (1K7L) and PPARγ (3DZY) with non-toxic effects. Moreover, DPP significantly increased the transcriptional activities of both PPARα and PPARγ and highly activated its expression in Ac2F liver cells, in vitro. Here, we demonstrated for the first time that DPP can act as a dual agonist of PPARα/γ using in vitro and in silico tools. CONCLUSIONS: The Cheonggukjang-specific compound DPP could be a novel PPARα/γ dual agonist and it is warranted to determine the therapeutic potential of PPARα/γ activation by dietary intervention and/or supplementation in the treatment of metabolic disorders without causing any adverse effects.


Asunto(s)
Bacillus subtilis/fisiología , Compuestos de Bifenilo/farmacología , Simulación por Computador , Simulación del Acoplamiento Molecular , PPAR alfa/agonistas , PPAR gamma/agonistas , Alimentos de Soja/microbiología , Compuestos de Bifenilo/química , Fermentación , Técnicas In Vitro
6.
Exp Gerontol ; 134: 110891, 2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-32114077

RESUMEN

Chronic inflammation is a complex and unresolved inflammatory response with low-grade multivariable patterns that aggravate systemic pathophysiological conditions and the aging process. To redefine and delineate these age-related complex inflammatory phenomena at the molecular, cellular, and systemic levels, the concept of "Senoinflammation" was recently formulated. In this review, we describe the accumulated data on both the multiphase systemic inflammatory process and the cellular proinflammatory signaling pathway. We also describe the proinflammatory mechanisms underlying the metabolic molecular pathways in aging. Additionally, we review age-related lipid accumulation, the role of the inflammatory senescence-associated secretory phenotype (SASP), the involvement of cytokine/chemokine secretion, endoplasmic reticulum (ER) stress, insulin resistance, and autophagy. The last section of the review highlights the modulation of the senoinflammatory process by the anti-aging and anti-inflammatory action of calorie restriction (CR). Evidence from aging and CR research strongly suggests that SASP from senescent cells may be the major source of secreted cytokines and chemokines during aging. A better understanding of the mechanisms underpinning the senoinflammatory response and the mitigating role of CR will provide insights into the molecular mechanisms of chronic inflammation and aging for potential interventions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA