Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Brain Behav Immun ; 120: 151-158, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38777283

RESUMEN

OBJECTIVE: This epigenomics sub-study embedded within a randomized controlled trial examined whether an evidenced-based behavioral intervention model that decreased stimulant use altered leukocyte DNA methylation (DNAm). METHODS: Sexual minority men with HIV who use methamphetamine were randomized to a five-session positive affect intervention (n = 32) or an attention-control condition (n = 21), both delivered during three months of contingency management for stimulant abstinence. All participants exhibited sustained HIV virologic control - an HIV viral load less than 40 copies/mL at baseline and six months post-randomization. The Illumina EPIC BeadChip measured leukocyte methylation of cytosine-phosphate-guanosine (CpG) sites mapping onto five a priori candidate genes of interest (i.e., ADRB2, BDNF, FKBP5, NR3C1, OXTR). Functional DNAm pathways and soluble markers of immune dysfunction were secondary outcomes. RESULTS: Compared to the attention-control condition, the positive affect intervention significantly decreased methylation of CpG sites on genes that regulate ß2 adrenergic and oxytocin receptors. There was an inconsistent pattern for the direction of the intervention effects on methylation of CpG sites on genes for glucocorticoid receptors and brain-derived neurotrophic factor. Pathway analyses adjusting for the false discovery rate (padj < 0.05) revealed significant intervention-related alterations in DNAm of Reactome pathways corresponding to neural function as well as dopamine, glutamate, and serotonin release. Positive affect intervention effects on DNAm were accompanied by significant reductions in the self-reported frequency of stimulant use. CONCLUSIONS: There is an epigenetic signature of an evidence-based behavioral intervention model that reduced stimulant use, which will guide the identification of biomarkers for treatment responses.

2.
J Neurosci ; 40(23): 4596-4608, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32341098

RESUMEN

Beta-amyloid (Aß) is thought to play a critical role in Alzheimer's disease (AD), and application of soluble oligomeric forms of Aß produces AD-like impairments in cognition and synaptic plasticity in experimental systems. We found previously that transgenic overexpression of the PP2A methylesterase, PME-1, or the PP2A methyltransferase, LCMT-1, altered the sensitivity of mice to Aß-induced impairments, suggesting that PME-1 inhibition may be an effective approach for preventing or treating these impairments. To explore this possibility, we examined the behavioral and electrophysiological effects of acutely applied synthetic Aß oligomers in male and female mice heterozygous for either a PME-1 KO or an LCMT-1 gene-trap mutation. We found that heterozygous PME-1 KO mice were resistant to Aß-induced impairments in cognition and synaptic plasticity, whereas LCMT-1 gene-trap mice showed increased sensitivity to Aß-induced impairments. The heterozygous PME-1 KO mice produced normal levels of endogenous Aß and exhibited normal electrophysiological responses to picomolar concentrations of Aß, suggesting that reduced PME-1 expression in these animals protects against Aß-induced impairments without impacting normal physiological Aß functions. Together, these data provide additional support for roles for PME-1 and LCMT-1 in regulating sensitivity to Aß-induced impairments, and suggest that inhibition of PME-1 may constitute a viable therapeutic approach for selectively protecting against the pathologic actions of Aß in AD.SIGNIFICANCE STATEMENT Elevated levels of ß-amyloid (Aß) in the brain are thought to contribute to the cognitive impairments observed in Alzheimer's disease patients. Here we show that genetically reducing endogenous levels of the PP2A methylesterase, PME-1, prevents the cognitive and electrophysiological impairments caused by acute exposure to pathologic concentrations of Aß without impairing normal physiological Aß function or endogenous Aß production. Conversely, reducing endogenous levels of the PP2A methyltransferase, LCMT-1, increases sensitivity to Aß-induced impairments. These data offer additional insights into the molecular factors that control sensitivity to Aß-induced impairments, and suggest that inhibiting PME-1 may constitute a viable therapeutic avenue for preventing Aß-related impairments in Alzheimer's disease.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Hidrolasas de Éster Carboxílico/biosíntesis , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/enzimología , Proteína O-Metiltransferasa/biosíntesis , Animales , Hidrolasas de Éster Carboxílico/genética , Disfunción Cognitiva/fisiopatología , Fenómenos Electrofisiológicos/efectos de los fármacos , Fenómenos Electrofisiológicos/fisiología , Femenino , Expresión Génica , Masculino , Ratones , Ratones Noqueados , Proteína O-Metiltransferasa/genética
3.
Dev Biol ; 455(2): 434-448, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31351040

RESUMEN

In the head of an embryo, a layer of mesenchyme surrounds the brain underneath the surface ectoderm. This cranial mesenchyme gives rise to the meninges, the calvaria (top part of the skull), and the dermis of the scalp. Abnormal development of these structures, especially the meninges and the calvaria, is linked to significant congenital defects in humans. It has been known that different areas of the cranial mesenchyme have different fates. For example, the calvarial bone develops from the cranial mesenchyme on the baso-lateral side of the head just above the eye (supraorbital mesenchyme, SOM), but not from the mesenchyme apical to SOM (early migrating mesenchyme, EMM). However, the molecular basis of this difference is not fully understood. To answer this question, we compared the transcriptomes of EMM and SOM using high-throughput sequencing (RNA-seq). This experiment identified a large number of genes that were differentially expressed in EMM and SOM, and gene ontology analyses found very different terms enriched in each region. We verified the expression of about 40 genes in the head by RNA in situ hybridization, and the expression patterns were annotated to make a map of molecular markers for 6 subdivisions of the cranial mesenchyme. Our data also provided insights into potential novel regulators of cranial mesenchyme development, including several axon guidance pathways, lectin complement pathway, cyclic-adenosine monophosphate (cAMP) signaling pathway, and ZIC family transcription factors. Together, information in this paper will serve as a unique resource to guide future research on cranial mesenchyme development.


Asunto(s)
Tipificación del Cuerpo/genética , Mesodermo/embriología , Cráneo/embriología , Animales , Orientación del Axón/genética , Moléculas de Adhesión Celular/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Inmunidad Innata , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias/genética , RNA-Seq , Transducción de Señal , Cráneo/citología , Factores de Transcripción/metabolismo , Transcriptoma
4.
Dev Biol ; 443(2): 103-116, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29852132

RESUMEN

The calvaria (upper part of the skull) is made of plates of bone and fibrous joints (sutures and fontanelles), and the proper balance and organization of these components are crucial to normal development of the calvaria. In a mouse embryo, the calvaria develops from a layer of head mesenchyme that surrounds the brain from shortly after mid-gestation. The mesenchyme just above the eye (supra-orbital mesenchyme, SOM) generates ossification centers for the bones, which then grow toward the apex gradually. In contrast, the mesenchyme apical to SOM (early migrating mesenchyme, EMM), including the area at the vertex, does not generate an ossification center. As a result, the dorsal midline of the head is occupied by sutures and fontanelles at birth. To date, the molecular basis for this regional difference in developmental programs is unknown. The current study provides vital insights into the genetic regulation of calvarial patterning. First, we showed that osteogenic signals were active in both EMM and SOM during normal development, which suggested the presence of an anti-osteogenic factor in EMM to counter the effect of these signals. Subsequently, we identified Lmx1b as an anti-osteogenic gene that was expressed in EMM but not in SOM. Furthermore, head mesenchyme-specific deletion of Lmx1b resulted in heterotopic ossification from EMM at the vertex, and craniosynostosis affecting multiple sutures. Conversely, forced expression of Lmx1b in SOM was sufficient to inhibit osteogenic specification. Therefore, we conclude that Lmx1b plays a key role as an anti-osteogenic factor in patterning the head mesenchyme into areas with different osteogenic competence. In turn, this patterning event is crucial to generating the proper organization of the bones and soft tissue joints of the calvaria.


Asunto(s)
Proteínas con Homeodominio LIM/metabolismo , Cráneo/embriología , Factores de Transcripción/metabolismo , Animales , Animales Recién Nacidos , Tipificación del Cuerpo/fisiología , Desarrollo Óseo/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas con Homeodominio LIM/genética , Masculino , Mesodermo/fisiología , Ratones , Ratones Endogámicos C57BL , Osteogénesis/fisiología , Cráneo/metabolismo , Factores de Transcripción/genética
5.
J Pain ; : 104615, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38936749

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is painful, and perineural invasion (PNI) has been associated with worst pain. Pain due to HNSCC is diverse and may vary based on clinicopathological factors. This study aims to characterize different pain patterns linked with PNI, its influence on daily functioning, and gain insights into molecular changes and pathways associated with PNI-related pain in HNSCC patients. We conducted a cross-sectional study across three medical centers (n=114), assessing pain phenotypes and their impact on daily functioning using two self-reported pain questionnaires, given to patients prior to their cancer surgery. Furthermore, we conducted RNA-seq analysis utilizing the TCGA dataset of HNSCC tumor from patients (n=192) to identify genes relevant to both PNI and pain. Upon adjusting for demographic and clinicopathological variables using linear regression models, we found that PNI independently predicted function-evoked pain according to the UCSF Oral Cancer Pain Questionnaire, as well as the worst pain intensity reported in the Brief Pain Inventory. Distinct pain patterns were observed to be associated with daily activities in varying manners. Our molecular analyses revealed significant disruptions in pathways associated with extracellular matrix (ECM) structure and organization. The top differentially expressed genes linked to the ECM are implicated in cancer development, pain, and neurodegenerative diseases. Our data underscore the importance of properly categorizing pain phenotypes in future studies aiming to uncover mechanistic underpinnings of pain. Additionally, we have compiled a list of genes of interest that could serve as targets for both cancer and cancer pain management. PERSPECTIVE: PNI independently predicts function-evoked pain. Different pain phenotypes affect daily activities differently. We identified a list of candidate genes involved in extracellular matrix structure and function that can be targeted for both cancer and cancer pain control.

6.
NPJ Precis Oncol ; 8(1): 130, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851780

RESUMEN

Oral squamous cell carcinoma (OSCC) biomarker studies rarely employ multi-omic biomarker strategies and pertinent clinicopathologic characteristics to predict mortality. In this study we determine for the first time a combined epigenetic, gene expression, and histology signature that differentiates between patients with different tobacco use history (heavy tobacco use with ≥10 pack years vs. no tobacco use). Using The Cancer Genome Atlas (TCGA) cohort (n = 257) and an internal cohort (n = 40), we identify 3 epigenetic markers (GPR15, GNG12, GDNF) and 13 expression markers (IGHA2, SCG5, RPL3L, NTRK1, CD96, BMP6, TFPI2, EFEMP2, RYR3, DMTN, GPD2, BAALC, and FMO3), which are dysregulated in OSCC patients who were never smokers vs. those who have a ≥ 10 pack year history. While mortality risk prediction based on smoking status and clinicopathologic covariates alone is inaccurate (c-statistic = 0.57), the combined epigenetic/expression and histologic signature has a c-statistic = 0.9409 in predicting 5-year mortality in OSCC patients.

7.
Database (Oxford) ; 20232023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37098414

RESUMEN

MicroRNAs (miRs) may contribute to disease etiology by influencing gene expression. Numerous databases are available for miR target prediction and validation, but their functionality is varied, and outputs are not standardized. The purpose of this review is to identify and describe databases for cataloging validated miR targets. Using Tools4miRs and PubMed, we identified databases with experimentally validated targets, human data, and a focus on miR-messenger RNA (mRNA) interactions. Data were extracted about the number of times each database was cited, the number of miRs, the target genes, the interactions per database, experimental methodology and key features of each database. The search yielded 10 databases, which in order of most cited to least were: miRTarBase, starBase/The Encyclopedia of RNA Interactomes, DIANA-TarBase, miRWalk, miRecords, miRGator, miRSystem, miRGate, miRSel and targetHub. Findings from this review suggest that the information presented within miR target validation databases can be enhanced by adding features such as flexibility in performing queries in multiple ways, downloadable data, ongoing updates and integrating tools for further miR-mRNA target interaction analysis. This review is designed to aid researchers, especially those new to miR bioinformatics tools, in database selection and to offer considerations for future development and upkeep of validation tools. Database URL http://mirtarbase.cuhk.edu.cn/.


Asunto(s)
MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Bases de Datos de Ácidos Nucleicos , Biología Computacional/métodos , PubMed
8.
Diabetes Res Clin Pract ; 203: 110868, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37543292

RESUMEN

AIMS/HYPOTHESIS: Our prior analysis of the Diabetes Prevention Program study identified a subset of five miRNAs that predict incident type 2 diabetes. The purpose of this study was to identify mRNAs and biological pathways targeted by these five miRNAs to elucidate potential mechanisms of risk and responses to the tested interventions. METHODS: Using experimentally validated data from miRTarBase version 8.0 and R (2021), we identified mRNAs with strong evidence to be regulated by individual or combinations of the five predictor miRNAs. Overrepresentation of the mRNA targets was assessed in pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation database. RESULTS: The five miRNAs targeted 167 pathways and 122 mRNAs. Nine of the pathways have known associations with type 2 diabetes: Insulin signaling, Insulin resistance, Diabetic cardiomyopathy, Type 2 diabetes, AGE-RAGE signaling in diabetic complications, HIF-1 signaling, TGF-beta signaling, PI3K/Akt signaling, and Adipocytokine signaling pathways. Vascular endothelial growth factor A (VEGFA) has prior genetic associations with risk for type 2 diabetes and was the most commonly targeted mRNA for this set of miRNAs. CONCLUSIONS/INTERPRETATION: These findings show that miRNA predictors of incident type 2 diabetes target mRNAs and pathways known to underlie risk for type 2 diabetes. Future studies should evaluate miRNAs as potential therapeutic targets for preventing and treating type 2 diabetes.

9.
Diabetes Metab Syndr Obes ; 16: 3445-3457, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37929060

RESUMEN

Introduction: Integrated transcriptome and microRNA differential gene expression (DEG) analyses may help to explain type 2 diabetes (T2D) pathogenesis in at-risk populations. The purpose of this study was to characterize DEG in banked biospecimens from underactive adult participants who responded to a randomized clinical trial measuring the effects of lifestyle interventions on T2D risk factors. DEGs were further examined within the context of annotated biological pathways. Methods: Participants (n = 52) in a previously completed clinical trial that assessed a 12-week behavioural intervention for T2D risk reduction were included. Participants who showed >6mg/dL decrease in fasting blood glucose were identified as responders. Gene expression was measured by RNASeq, and overrepresentation analysis within KEGG pathways and weighted gene correlation network analysis (WGCNA) were performed. Results: No genes remained significantly differentially expressed after correction for multiple comparisons. One module derived by WGCNA related to body mass index was identified, which contained genes located in KEGG pathways related to known mechanisms underlying risk for T2D as well as pathways related to neurodegeneration and protein misfolding. A network analysis showed indirect connections between genes in this module and islet amyloid polypeptide (IAPP), which has previously been hypothesized as a mechanism for T2D. Discussion: We validated prior studies that showed pathways related to metabolism, inflammation/immunity, and endocrine/hormone function are related to risk for T2D. We identified evidence for new potential mechanisms that include protein misfolding. Additional studies are needed to determine whether these are potential therapeutic targets to decrease risk for T2D.

10.
Mol Med Rep ; 25(5)2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35244194

RESUMEN

MicroRNAs (miRNAs) may be considered important regulators of risk for type 2 diabetes (T2D). The aim of the present study was to identify novel sets of miRNAs associated with T2D risk, as well as their gene and pathway targets. Circulating miRNAs (n=59) were measured in plasma from participants in a previously completed clinical trial (n=82). An agnostic statistical approach was applied to identify novel sets of miRNAs with optimal co­expression patterns. In silico analyses were used to identify the messenger RNA and biological pathway targets of the miRNAs within each factor. A total of three factors of miRNAs were identified, containing 18, seven and two miRNAs each. Eight biological pathways were revealed to contain genes targeted by the miRNAs in all three factors, 38 pathways contained genes targeted by the miRNAs in two factors, and 55, 18 and two pathways were targeted by the miRNAs in a single factor, respectively (all q<0.05). The pathways containing genes targeted by miRNAs in the largest factor shared a common theme of biological processes related to metabolism and inflammation. By contrast, the pathways containing genes targeted by miRNAs in the second largest factor were related to endocrine function and hormone activity. The present study focused on the pathways uniquely targeted by each factor of miRNAs in order to identify unique mechanisms that may be associated with a subset of individuals. Further exploration of the genes and pathways related to these biological themes may provide insights about the subtypes of T2D and lead to the identification of novel therapeutic targets.


Asunto(s)
Fenómenos Biológicos , Diabetes Mellitus Tipo 2 , MicroARNs , Diabetes Mellitus Tipo 2/genética , Perfilación de la Expresión Génica , Humanos , Inflamación/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética
11.
Adv Biol (Weinh) ; 6(9): e2200187, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35925609

RESUMEN

Head and neck cancer (HNC) is the seventh most common cancer worldwide, the majority being oral squamous cell carcinoma. Despite advances in cancer diagnosis and treatment, the survival rate of patients with HNC remains stagnant. The cancer-nerve interaction has been recognized as an important driver of cancer progression. Schwann cells, a type of peripheral glia, have been implicated in promoting cancer cell growth, migration, dispersion, and invasion into the nerve in many cancers. Here, it is demonstrated that the presence of Schwann cells makes oral cancer cells more aggressive by promoting their proliferation, extracellular matrix breakdown, and altering cell metabolism. Furthermore, oral cancer cells became larger, more circular, with more projections and nuclei following co-culturing with Schwann cells. RNA-sequencing analysis in oral cancer cells following exposure to Schwann cells shows corresponding changes in genes involved in the hallmarks of cancer and cell metabolism; the enriched KEGG pathways are spliceosome, RNA transport, cell cycle, axon guidance, signaling pathways regulating pluripotency of stem cells, cAMP signaling, WNT signaling, proteoglycans in cancer and PI3K-Akt signaling. Taken together, these results suggest a significant role for Schwann cells in facilitating oral cancer progression, highlighting their potential as a target to treat oral cancer progression.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Carcinoma de Células Escamosas/genética , Proliferación Celular/genética , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Neoplasias de la Boca/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Células de Schwann/metabolismo , Vía de Señalización Wnt
12.
Adv Biol (Weinh) ; 6(9): e2200190, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35925599

RESUMEN

Oral squamous cell carcinoma (OSCC) patients suffer from poor survival due to metastasis or locoregional recurrence, processes that are both facilitated by perineural invasion (PNI). OSCC has higher rates of PNI than other cancer subtypes, with PNI present in 80% of tumors. Despite the impact of PNI on oral cancer prognosis and pain, little is known about the genes that drive PNI, which in turn drive pain, invasion, and metastasis. In this study, clinical data, preclinical, and in vitro models are leveraged to elucidate the role of neurotrophins in OSCC metastasis, PNI, and pain. The expression data in OSCC patients with metastasis, PNI, or pain demonstrate dysregulation of neurotrophin genes. TrkA and nerve growth factor receptor (NGFR) are focused, two receptors that are activated by NGF, a neurotrophin expressed at high levels in OSCC. It is demonstrated that targeted knockdown of these two receptors inhibits proliferation and invasion in an in vitro and preclinical model of OSCC, and metastasis, PNI, and pain. It is further determined that TrkA knockdown alone inhibits thermal hyperalgesia, whereas NGFR knockdown alone inhibits mechanical allodynia. Collectively the results highlight the ability of OSCC to co-opt different components of the neurotrophin pathway in metastasis, PNI, and pain.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Carcinoma de Células Escamosas/genética , Humanos , Neoplasias de la Boca/genética , Invasividad Neoplásica/genética , Recurrencia Local de Neoplasia , Procesos Neoplásicos , Factores de Crecimiento Nervioso , Proteínas del Tejido Nervioso , Dolor , Proteínas Tirosina Quinasas Receptoras , Receptor de Factor de Crecimiento Nervioso , Receptor trkA , Receptores de Factor de Crecimiento Nervioso/genética , Carcinoma de Células Escamosas de Cabeza y Cuello
13.
J Dev Biol ; 9(3)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34449628

RESUMEN

Development of the teeth requires complex signaling interactions between the mesenchyme and the epithelium mediated by multiple pathways. For example, canonical WNT signaling is essential to many aspects of odontogenesis, and inhibiting this pathway blocks tooth development at an early stage. R-spondins (RSPOs) are secreted proteins, and they mostly augment WNT signaling. Although RSPOs have been shown to play important roles in the development of many organs, their role in tooth development is unclear. A previous study reported that mutating Rspo2 in mice led to supernumerary lower molars, while teeth forming at the normal positions showed no significant anomalies. Because multiple Rspo genes are expressed in the orofacial region, it is possible that the relatively mild phenotype of Rspo2 mutants is due to functional compensation by other RSPO proteins. We found that inactivating Rspo3 in the craniofacial mesenchyme caused the loss of lower incisors, which did not progress beyond the bud stage. A simultaneous deletion of Rspo2 and Rspo3 caused severe disruption of craniofacial development from early stages, which was accompanied with impaired development of all teeth. Together, these results indicate that Rspo3 is an important regulator of mammalian dental and craniofacial development.

14.
Biomark Res ; 9(1): 90, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930473

RESUMEN

BACKGROUND: Oral squamous cell carcinoma (OSCC) has poor survival rates. There is a pressing need to develop more precise risk assessment methods to tailor clinical treatment. Epigenome-wide association studies in OSCC have not produced a viable biomarker. These studies have relied on methylation array platforms, which are limited in their ability to profile the methylome. In this study, we use MethylCap-Seq (MC-Seq), a comprehensive methylation quantification technique, and brush swab samples, to develop a noninvasive, readily translatable approach to profile the methylome in OSCC patients. METHODS: Three OSCC patients underwent collection of cancer and contralateral normal tissue and brush swab biopsies, totaling 4 samples for each patient. Epigenome-wide DNA methylation quantification was performed using the SureSelectXT Methyl-Seq platform. DNA quality and methylation site resolution were compared between brush swab and tissue samples. Correlation and methylation value difference were determined for brush swabs vs. tissues for each respective patient and site (i.e., cancer or normal). Correlations were calculated between cancer and normal tissues and brush swab samples for each patient to determine the robustness of DNA methylation marks using brush swabs in clinical biomarker studies. RESULTS: There were no significant differences in DNA yield between tissue and brush swab samples. Mapping efficiency exceeded 90% across all samples, with no differences between tissue and brush swabs. The average number of CpG sites with at least 10x depth of coverage was 2,716,674 for brush swabs and 2,903,261 for tissues. Matched tissue and brush swabs had excellent correlation (r = 0.913 for cancer samples and r = 0.951 for normal samples). The methylation profile of the top 1000 CpGs was significantly different between cancer and normal samples (mean p-value = 0.00021) but not different between tissues and brush swabs (mean p-value = 0.11). CONCLUSIONS: Our results demonstrate that MC-Seq is an efficient platform for epigenome profiling in cancer biomarker studies, with broader methylome coverage than array-based platforms. Brush swab biopsy provides adequate DNA yield for MC-Seq, and taken together, our findings set the stage for development of a non-invasive methylome quantification technique for oral cancer with high translational potential.

15.
Biomark Res ; 9(1): 42, 2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34090518

RESUMEN

BACKGROUND: Oral squamous cell carcinoma (OSCC) is a capricious cancer with poor survival rates, even for early-stage patients. There is a pressing need to develop more precise risk assessment methods to appropriately tailor clinical treatment. Genome-wide association studies have not produced a viable biomarker. However, these studies are limited by using heterogeneous cohorts, not focusing on methylation although OSCC is a heavily epigenetically-regulated cancer, and not combining molecular data with clinicopathologic data for risk prediction. In this study we focused on early-stage (I/II) OSCC and created a risk score called the REASON score, which combines clinicopathologic characteristics with a 12-gene methylation signature, to predict the risk of 5-year mortality. METHODS: We combined data from an internal cohort (n = 515) and The Cancer Genome Atlas (TCGA) cohort (n = 58). We collected clinicopathologic data from both cohorts to derive the non-molecular portion of the REASON score. We then analyzed the TCGA cohort DNA methylation data to derive the molecular portion of the risk score. RESULTS: 5-year disease specific survival was 63% for the internal cohort and 86% for the TCGA cohort. The clinicopathologic features with the highest predictive ability among the two the cohorts were age, race, sex, tobacco use, alcohol use, histologic grade, stage, perineural invasion (PNI), lymphovascular invasion (LVI), and margin status. This panel of 10 non-molecular features predicted 5-year mortality risk with a concordance (c)-index = 0.67. Our molecular panel consisted of a 12-gene methylation signature (i.e., HORMAD2, MYLK, GPR133, SOX8, TRPA1, ABCA2, HGFAC, MCPH1, WDR86, CACNA1H, RNF216, CCNJL), which had the most significant differential methylation between patients who survived vs. died by 5 years. All 12 genes have already been linked to survival in other cancers. Of the genes, only SOX8 was previously associated with OSCC; our study was the first to link the remaining 11 genes to OSCC survival. The combined molecular and non-molecular panel formed the REASON score, which predicted risk of death with a c-index = 0.915. CONCLUSIONS: The REASON score is a promising biomarker to predict risk of mortality in early-stage OSCC patients. Validation of the REASON score in a larger independent cohort is warranted.

16.
PLoS One ; 12(12): e0189413, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29253878

RESUMEN

Soluble forms of oligomeric beta-amyloid (Aß) are thought to play a central role in Alzheimer's disease (AD). Transgenic manipulation of methylation of the serine/threonine protein phosphatase, PP2A, was recently shown to alter the sensitivity of mice to AD-related impairments resulting from acute exposure to elevated levels of Aß. In addition, eicosanoyl-5-hydroxytryptamide (EHT), a naturally occurring component from coffee beans that modulates PP2A methylation, was shown to confer therapeutic benefits in rodent models of AD and Parkinson's disease. Here, we tested the hypothesis that EHT protects animals from the pathological effects of exposure to elevated levels of soluble oligomeric Aß. We treated mice with EHT-containing food at two different doses and assessed the sensitivity of these animals to Aß-induced behavioral and electrophysiological impairments. We found that EHT administration protected animals from Aß-induced cognitive impairments in both a radial-arm water maze and contextual fear conditioning task. We also found that both chronic and acute EHT administration prevented Aß-induced impairments in long-term potentiation. These data add to the accumulating evidence suggesting that interventions with pharmacological agents, such as EHT, that target PP2A activity may be therapeutically beneficial for AD and other neurological conditions.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/química , Trastornos del Conocimiento/prevención & control , Serotonina/análogos & derivados , Enfermedad de Alzheimer/patología , Animales , Café , Cognición/efectos de los fármacos , Condicionamiento Psicológico , Modelos Animales de Enfermedad , Electrofisiología , Miedo , Femenino , Potenciación a Largo Plazo , Masculino , Aprendizaje por Laberinto , Metilación , Ratones , Ratones Endogámicos C57BL , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/patología , Plasticidad Neuronal , Fosforilación , Serotonina/farmacología , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA