Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 46(5): 3919-3945, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38785511

RESUMEN

This review aims to highlight the structures of ADAR proteins that have been crucial in the discernment of their functions and are relevant to future therapeutic development. ADAR proteins can correct or diversify genetic information, underscoring their pivotal contribution to protein diversity and the sophistication of neuronal networks. ADAR proteins have numerous functions in RNA editing independent roles and through the mechanisms of A-I RNA editing that continue to be revealed. Provided is a detailed examination of the ADAR family members-ADAR1, ADAR2, and ADAR3-each characterized by distinct isoforms that offer both structural diversity and functional variability, significantly affecting RNA editing mechanisms and exhibiting tissue-specific regulatory patterns, highlighting their shared features, such as double-stranded RNA binding domains (dsRBD) and a catalytic deaminase domain (CDD). Moreover, it explores ADARs' extensive roles in immunity, RNA interference, and disease modulation, demonstrating their ambivalent nature in both the advancement and inhibition of diseases. Through this comprehensive analysis, the review seeks to underline the potential of targeting ADAR proteins in therapeutic strategies, urging continued investigation into their biological mechanisms and health implications.

2.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37047270

RESUMEN

The Ebola virus (EBOV) is still highly infectious and causes severe hemorrhagic fevers in primates. However, there are no regulatorily approved drugs against the Ebola virus disease (EVD). The highly virulent and lethal nature of EVD highlights the need to develop therapeutic agents. Viral protein 40 kDa (VP40), the most abundantly expressed protein during infection, coordinates the assembly, budding, and release of viral particles into the host cell. It also regulates viral transcription and RNA replication. This study sought to identify small molecules that could potentially inhibit the VP40 protein by targeting the N-terminal domain using an in silico approach. The statistical quality of AutoDock Vina's capacity to discriminate between inhibitors and decoys was determined, and an area under the curve of the receiver operating characteristic (AUC-ROC) curve of 0.791 was obtained. A total of 29,519 natural-product-derived compounds from Chinese and African sources as well as 2738 approved drugs were successfully screened against VP40. Using a threshold of -8 kcal/mol, a total of 7, 11, 163, and 30 compounds from the AfroDb, Northern African Natural Products Database (NANPDB), traditional Chinese medicine (TCM), and approved drugs libraries, respectively, were obtained after molecular docking. A biological activity prediction of the lead compounds suggested their potential antiviral properties. In addition, random-forest- and support-vector-machine-based algorithms predicted the compounds to be anti-Ebola with IC50 values in the micromolar range (less than 25 µM). A total of 42 natural-product-derived compounds were identified as potential EBOV inhibitors with desirable ADMET profiles, comprising 1, 2, and 39 compounds from NANPDB (2-hydroxyseneganolide), AfroDb (ZINC000034518176 and ZINC000095485942), and TCM, respectively. A total of 23 approved drugs, including doramectin, glecaprevir, velpatasvir, ledipasvir, avermectin B1, nafarelin acetate, danoprevir, eltrombopag, lanatoside C, and glycyrrhizin, among others, were also predicted to have potential anti-EBOV activity and can be further explored so that they may be repurposed for EVD treatment. Molecular dynamics simulations coupled with molecular mechanics Poisson-Boltzmann surface area calculations corroborated the stability and good binding affinities of the complexes (-46.97 to -118.9 kJ/mol). The potential lead compounds may have the potential to be developed as anti-EBOV drugs after experimental testing.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Fiebre Hemorrágica Ebola/metabolismo , Proteínas Virales/metabolismo , Simulación del Acoplamiento Molecular , Quimioinformática , Ebolavirus/metabolismo
3.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37047766

RESUMEN

Altered RNA editing has been linked to several neurodevelopmental disorders, including autism spectrum disorder (ASD) and intellectual disability, in addition to depression, schizophrenia, some cancers, viral infections and autoimmune disorders. The human ADAR2 is a potential therapeutic target for managing these various disorders due to its crucial role in adenosine to inosine editing. This study applied consensus scoring to rank potential ADAR2 inhibitors after performing molecular docking with AutoDock Vina and Glide (Maestro), using a library of 35,161 compounds obtained from traditional Chinese medicine. A total of 47 compounds were predicted to be good binders of the human ADAR2 and had insignificant toxicity concerns. Molecular dynamics (MD) simulations, including the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) procedure, also emphasized the binding of the shortlisted compounds. The potential compounds had plausible binding free energies ranging from -81.304 to -1068.26 kJ/mol from the MM/PBSA calculations. ZINC000085511995, a naphthoquinone had more negative binding free energy (-1068.26 kJ/mol) than inositol hexakisphosphate (IHP) [-873.873 kJ/mol], an agonist and a strong binder of ADAR2. The potential displacement of IHP by ZINC000085511995 in the IHP binding site of ADAR2 could be explored for possible deactivation of ADAR2. Bayesian-based biological activity prediction corroborates the neuropharmacological, antineoplastic and antiviral activity of the potential lead compounds. All the potential lead compounds, except ZINC000014612330 and ZINC000013462928, were predicted to be inhibitors of various deaminases. The potential lead compounds also had probability of activity (Pa) > 0.442 and probability of inactivity (Pi) < 0.116 values for treating acute neurologic disorders, except for ZINC000085996580 and ZINC000013462928. Pursuing these compounds for their anti-ADAR2 activities holds a promising future, especially against neurological disorders, some cancers and viral infections caused by RNA viruses. Molecular interaction, hydrogen bond and per-residue decomposition analyses predicted Arg400, Arg401, Lys519, Trp687, Glu689, and Lys690 as hot-spot residues in the ADAR2 IHP binding site. Most of the top compounds were observed to have naphthoquinone, indole, furanocoumarin or benzofuran moieties. Serotonin and tryptophan, which are beneficial in digestive regulation, improving sleep cycle and mood, are indole derivatives. These chemical series may have the potential to treat neurological disorders, prion diseases, some cancers, specific viral infections, metabolic disorders and eating disorders through the disruption of ADAR2 pathways. A total of nine potential lead compounds were shortlisted as plausible modulators of ADAR2.


Asunto(s)
Inhibidores de la Adenosina Desaminasa , Enfermedades Transmisibles , Neoplasias , Humanos , Teorema de Bayes , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de la Adenosina Desaminasa/farmacología
4.
Int J Mol Sci ; 24(16)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37628792

RESUMEN

Adenosine deaminase acting on RNA 2 (ADAR2) is an important enzyme involved in RNA editing processes, particularly in the conversion of adenosine to inosine in RNA molecules. Dysregulation of ADAR2 activity has been implicated in various diseases, including neurological disorders (including schizophrenia), inflammatory disorders, viral infections, and cancers. Therefore, targeting ADAR2 with small molecules presents a promising therapeutic strategy for modulating RNA editing and potentially treating associated pathologies. However, there are limited compounds that effectively inhibit ADAR2 reactions. This study therefore employed computational approaches to virtually screen natural compounds from the traditional Chinese medicine (TCM) library. The shortlisted compounds demonstrated a stronger binding affinity to the ADAR2 (<-9.5 kcal/mol) than the known inhibitor, 8-azanebularine (-6.8 kcal/mol). The topmost compounds were also observed to possess high binding affinity towards 5-HT2CR with binding energies ranging from -7.8 to -12.9 kcal/mol. Further subjecting the top ADAR2-ligand complexes to molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations revealed that five potential hit compounds comprising ZINC000014637370, ZINC000085593577, ZINC000042890265, ZINC000039183320, and ZINC000101100339 had favorable binding free energies of -174.911, -137.369, -117.236, -67.023, and -64.913 kJ/mol, respectively, with the human ADAR2 protein. Residues Lys350, Cys377, Glu396, Cys451, Arg455, Ser486, Gln488, and Arg510 were also predicted to be crucial in ligand recognition and binding. This finding will provide valuable insights into the molecular interactions between ADAR2 and small molecules, aiding in the design of future ADAR2 inhibitors with potential therapeutic applications. The potential lead compounds were also profiled to have insignificant toxicities. A structural similarity search via DrugBank revealed that ZINC000039183320 and ZINC000014637370 were similar to naringin and naringenin, which are known adenosine deaminase (ADA) inhibitors. These potential novel ADAR2 inhibitors identified herein may be beneficial in treating several neurological disorders, cancers, viral infections, and inflammatory disorders caused by ADAR2 after experimental validation.


Asunto(s)
Adenosina Desaminasa , Adenosina , Humanos , Ligandos , Biblioteca de Genes , Hidrolasas
5.
BMC Genomics ; 21(1): 648, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32962629

RESUMEN

BACKGROUND: Disease resilience is the ability to maintain performance under pathogen exposure but is difficult to select for because breeding populations are raised under high health. Selection for resilience requires a trait that is heritable, easy to measure on healthy animals, and genetically correlated with resilience. Natural antibodies (NAb) are important parts of the innate immune system and are found to be heritable and associated with disease susceptibility in dairy cattle and poultry. Our objective was to investigate NAb and total IgG in blood of healthy, young pigs as potential indicator traits for disease resilience. RESULTS: Data were from Yorkshire x Landrace pigs, with IgG and IgM NAb (four antigens) and total IgG measured by ELISA in blood plasma collected ~ 1 week after weaning, prior to their exposure to a natural polymicrobial challenge. Heritability estimates were lower for IgG NAb (0.12 to 0.24, + 0.05) and for total IgG (0.19 + 0.05) than for IgM NAb (0.33 to 0.53, + 0.07) but maternal effects were larger for IgG NAb (0.41 to 0.52, + 0.03) and for total IgG (0.19 + 0.05) than for IgM NAb (0.00 to 0.10, + 0.04). Phenotypically, IgM NAb titers were moderately correlated with each other (average 0.60), as were IgG NAb titers (average 0.42), but correlations between IgM and IgG NAb titers were weak (average 0.09). Phenotypic correlations of total IgG were moderate with NAb IgG (average 0.46) but weak with NAb IgM (average 0.01). Estimates of genetic correlations among NAb showed similar patterns but with small SE, with estimates averaging 0.76 among IgG NAb, 0.63 among IgM NAb, 0.17 between IgG and IgM NAb, 0.64 between total IgG and IgG NAb, and 0.13 between total IgG and IgM NAb. Phenotypically, pigs that survived had slightly higher levels of NAb and total IgG than pigs that died. Genetically, higher levels of NAb tended to be associated with greater disease resilience based on lower mortality and fewer parenteral antibiotic treatments. Genome-wide association analyses for NAb titers identified several genomic regions, with several candidate genes for immune response. CONCLUSIONS: Levels of NAb in blood of healthy young piglets are heritable and potential genetic indicators of resilience to polymicrobial disease.


Asunto(s)
Coinfección/genética , Resistencia a la Enfermedad , Inmunoglobulina G/genética , Inmunoglobulina M/genética , Enfermedades de los Porcinos/genética , Porcinos/genética , Animales , Coinfección/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Fenotipo , Carácter Cuantitativo Heredable , Porcinos/inmunología , Enfermedades de los Porcinos/inmunología
6.
Vet Res ; 46: 107, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26407558

RESUMEN

Minimal research has focused on understanding mechanisms underlying porcine reproductive and respiratory syndrome virus (PRRSV) induced reproductive failure. We have completed a large-scale project investigating phenotypic and genotypic predictors of reproductive PRRS severity in which numerous clinical, pathological, immunologic and viral responses were characterized in dams and fetuses. The goal was to determine which phenotypic responses were associated with fetal viral load and death after experimental infection of pregnant gilts with type 2 PRRSV, thereby elucidating mechanisms of reproductive PRRS in third trimester pregnant gilts. The presence of fetal infection and increasing RNA concentration at the maternal-fetal interface were strong predictors of the probability of fetal death, while PRRSV RNA concentration in dam sera and systemic tissues were not associated with the odds of fetal death. Fetal infection and death clustered, indicating that the status of adjacent fetuses is crucial for lateral transmission and fetal outcome. Several systemic immune responses of gilts were associated with fetal outcome and viral load: interferon-α contributed to the probability of fetal death, but absolute numbers of T helper cells in early infection, absolute numbers of myeloid cells over time and interleukin 12 levels appeared protective. These results suggest specific immune responses may either contribute to, or protect against, transplacental virus transmission. The WUR10000125 SNP on chromosome 4, associated with PRRS resilience in nursery pigs, was not associated with reproductive outcome. Whereas past research suggested that fetal death results from events occurring at the maternal-fetal interface, we conclude that viral replication within fetuses and spread of PRRSV to adjacent fetuses are pivotal events in the pathogenesis of reproductive PRRS.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Complicaciones Infecciosas del Embarazo/veterinaria , Timo/virología , Carga Viral/veterinaria , Animales , Femenino , Feto/virología , Embarazo , Complicaciones Infecciosas del Embarazo/virología , ARN Viral/análisis , Porcinos
7.
Vet Res ; 45: 128, 2014 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-25497114

RESUMEN

In spite of more than two decades of extensive research, the understanding of porcine reproductive and respiratory syndrome virus (PRRSv) immunity is still incomplete. A PRRSv infection of the late term pregnant female can result in abortions, early farrowings, fetal death, and the birth of weak, congenitally infected piglets. The objectives of the present study were to investigate changes in peripheral blood mononuclear cell populations in third trimester pregnant females infected with type 2 PRRSv (NVSL 97-7895) and to analyze potential relationships with viral load and fetal mortality rate. PRRSv infection caused a massive, acute drop in total leukocyte counts affecting all PBMC populations by two days post infection. Except for B cells, cell counts started to rebound by day six post infection. Our data also show a greater decrease of naïve B cells, T-helper cells and cytolytic T cells than their respective effector or memory counterparts. Absolute numbers of T cells and γδ T cells were negatively associated with PRRSv RNA concentration in gilt serum over time. Additionally, absolute numbers of T helper cells may be predictive of fetal mortality rate. The preceding three leukocyte populations may therefore be predictive of PRRSv-related pathological outcomes in pregnant gilts. Although many questions regarding the immune responses remain unanswered, these findings provide insight and clues that may help reduce the impact of PRRSv in pregnant gilts.


Asunto(s)
Aborto Veterinario/virología , Leucocitos/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Carga Viral/veterinaria , Aborto Veterinario/fisiopatología , Animales , Femenino , Recuento de Leucocitos/veterinaria , Leucocitos Mononucleares/virología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Embarazo , Porcinos
8.
Vet Res ; 45: 113, 2014 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-25479904

RESUMEN

In spite of extensive research, immunologic control mechanisms against Porcine Reproductive and Respiratory Syndrome virus (PRRSv) remain poorly understood. Cytokine responses have been exhaustively studied in nursery pigs and show contradictory results. Since no detailed reports on cytokine responses to PRRSv in pregnant females exist, the objectives of this study were to compare host cytokine responses between PRRSv-infected and non-infected pregnant gilts, and to investigate relationships between cytokine levels in infected gilts and viral load or fetal mortality rate. Serum samples and supernatants of peripheral blood mononuclear cells (PBMC) either stimulated with PRRSv or phorbol myristate acetate/Ionomycin (PMA/Iono) were analyzed for cytokines/chemokines: interleukins (IL) 1-beta (IL1ß), IL4, IL8, IL10, IL12, chemokine ligand 2 (CCL2), interferon alpha (IFNα) and interferon gamma (IFNγ). Three cytokines (IFNα, CCL2, IFNγ) in gilt serum differed significantly in inoculated versus control gilts over time. In supernatants of PRRSv stimulated PBMC from PRRSv-infected gilts, levels of IFNα were significantly decreased, while IL8 secretion was significantly increased. PRRSv infection altered the secretion of all measured cytokines, with the exception of IFNα, from PBMC after mitogen stimulation, indicating a possible immunomodulatory effect of PRRSv. IFNα, CCL2, and IFNγ in serum, and IFNγ in supernatants of PMA/Iono stimulated PBMC were significantly associated with viral load in tissues, serum or both. However, only IFNα in supernatants of PRRSv stimulated PBMC was significantly associated with fetal mortality rate. We conclude that of the eight cytokines tested in this study IFNα was the best indicator of viral load and severity of reproductive PRRSv infection.


Asunto(s)
Citocinas/sangre , Ionomicina/farmacología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Acetato de Tetradecanoilforbol/farmacología , Carga Viral , Animales , Femenino , Síndrome Respiratorio y de la Reproducción Porcina/sangre , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Embarazo , Porcinos
9.
BMC Vet Res ; 10: 219, 2014 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-25239088

RESUMEN

BACKGROUND: The snatch-farrowed porcine-colostrum-deprived (SF-pCD) pig model, in which neonates are raised on commercially available bovine colostrum, is an alternative model for porcine infectious disease research. It is not known if SF-pCD pigs possess growth performance and immunity comparable to conventional, farm-raised pigs. The current experiment compared growth performance and immune responses of SF-pCD pigs to their farm-raised siblings following Mycoplasma hyopneumoniae (Mhyo) vaccination. Twelve SF-pCD and 13 farm-raised siblings were vaccinated on day 7 (D7) and D26 of age. Body weights were measured once or twice weekly and average daily gain (ADG) was calculated. Peripheral blood mononuclear cells (PBMC) were isolated on D40. Cytokine secretion from PBMC stimulated with Mhyo antigen or phorbol myristate acetate plus ionomycin (PMA/Iono) was assessed using a multiplexed fluorescent microsphere immunoassay (FMIA). Additionally, interferon gamma (IFNγ) secretion from stimulated PBMC was assessed using ELISPOT. Mhyo IgG titers were measured by an ELISA in D40 sera. RESULTS: Growth performance did not differ between groups before weaning, but SF-pCD pigs had higher ADG after weaning. In response to Mhyo stimulation, numbers of IFNγ secreting PBMC and levels of interleukin 8 (IL8) and IL10 in PBMC supernatants were significantly higher in SF-pCD pigs, as were Mhyo antibody levels in sera, and levels of IL1ß, IL8 and IL12 in supernatants of PMA/Iono stimulated PBMC. CONCLUSIONS: Under the conditions of this experiment, SF-pCD pigs demonstrated superior growth performance and enhanced humoral and cell-mediated immunity following vaccination. Whether or not this reflects greater resistance or tolerance to infection is unknown but the ability to react positively to the vaccination provides evidence that SF-pCD pigs are a suitable alternative model for swine disease research.


Asunto(s)
Inmunidad Adaptativa/fisiología , Vacunas Bacterianas/inmunología , Calostro , Inmunidad Innata/fisiología , Mycoplasma hyopneumoniae/inmunología , Enfermedades de los Porcinos/prevención & control , Animales , Animales Recién Nacidos/inmunología , Citocinas/genética , Citocinas/metabolismo , Dieta/veterinaria , Femenino , Infecciones por Mycoplasma/prevención & control , Infecciones por Mycoplasma/veterinaria , Parto , Embarazo , Porcinos
10.
Computation (Basel) ; 12(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38938622

RESUMEN

The prognosis of mixed-lineage leukemia (MLL) has remained a significant health concern, especially for infants. The minimal treatments available for this aggressive type of leukemia has been an ongoing problem. Chromosomal translocations of the KMT2A gene are known as MLL, which expresses MLL fusion proteins. A protein called menin is an important oncogenic cofactor for these MLL fusion proteins, thus providing a new avenue for treatments against this subset of acute leukemias. In this study, we report results using the structure-based drug design (SBDD) approach to discover potential novel MLL-mediated leukemia inhibitors from natural products against menin. The three-dimensional (3D) protein model was derived from Protein Databank (Protein ID: 4GQ4), and EasyModeller 4.0 and I-TASSER were used to fix missing residues during rebuilding. Out of the ten protein models generated (five from EasyModeller and I-TASSER each), one model was selected. The selected model demonstrated the most reasonable quality and had 75.5% of residues in the most favored regions, 18.3% of residues in additionally allowed regions, 3.3% of residues in generously allowed regions, and 2.9% of residues in disallowed regions. A ligand library containing 25,131 ligands from a Chinese database was virtually screened using AutoDock Vina, in addition to three known menin inhibitors. The top 10 compounds including ZINC000103526876, ZINC000095913861, ZINC000095912705, ZINC000085530497, ZINC000095912718, ZINC000070451048, ZINC000085530488, ZINC000095912706, ZINC000103580868, and ZINC000103584057 had binding energies of -11.0, -10.7, -10.6, -10.2, -10.2, -9.9, -9.9, -9.9, -9.9, and -9.9 kcal/mol, respectively. To confirm the stability of the menin-ligand complexes and the binding mechanisms, molecular dynamics simulations including molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) computations were performed. The amino acid residues that were found to be potentially crucial in ligand binding included Phe243, Met283, Cys246, Tyr281, Ala247, Ser160, Asn287, Asp185, Ser183, Tyr328, Asn249, His186, Leu182, Ile248, and Pro250. MI-2-2 and PubChem CIDs 71777742 and 36294 were shown to possess anti-menin properties; thus, this justifies a need to experimentally determine the activity of the identified compounds. The compounds identified herein were found to have good pharmacological profiles and had negligible toxicity. Additionally, these compounds were predicted as antileukemic, antineoplastic, chemopreventive, and apoptotic agents. The 10 natural compounds can be further explored as potential novel agents for the effective treatment of MLL-mediated leukemia.

11.
Front Cell Infect Microbiol ; 14: 1351737, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500508

RESUMEN

Monkeypox (now Mpox), a zoonotic disease caused by the monkeypox virus (MPXV) is an emerging threat to global health. In the time span of only six months, from May to October 2022, the number of MPXV cases breached 80,000 and many of the outbreaks occurred in locations that had never previously reported MPXV. Currently there are no FDA-approved MPXV-specific vaccines or treatments, therefore, finding drugs to combat MPXV is of utmost importance. The A42R profilin-like protein of the MPXV is involved in cell development and motility making it a critical drug target. A42R protein is highly conserved across orthopoxviruses, thus A42R inhibitors may work for other family members. This study sought to identify potential A42R inhibitors for MPXV treatment using computational approaches. The energy minimized 3D structure of the A42R profilin-like protein (PDB ID: 4QWO) underwent virtual screening using a library of 36,366 compounds from Traditional Chinese Medicine (TCM), AfroDb, and PubChem databases as well as known inhibitor tecovirimat via AutoDock Vina. A total of seven compounds comprising PubChem CID: 11371962, ZINC000000899909, ZINC000001632866, ZINC000015151344, ZINC000013378519, ZINC000000086470, and ZINC000095486204, predicted to have favorable binding were shortlisted. Molecular docking suggested that all seven proposed compounds have higher binding affinities to A42R (-7.2 to -8.3 kcal/mol) than tecovirimat (-6.7 kcal/mol). This was corroborated by MM/PBSA calculations, with tecovirimat demonstrating the highest binding free energy of -68.694 kJ/mol (lowest binding affinity) compared to the seven shortlisted compounds that ranged from -73.252 to -97.140 kJ/mol. Furthermore, the 7 compounds in complex with A42R demonstrated higher stability than the A42R-tecovirimat complex when subjected to 100 ns molecular dynamics simulations. The protein-ligand interaction maps generated using LigPlot+ suggested that residues Met1, Glu3, Trp4, Ile7, Arg127, Val128, Thr131, and Asn133 are important for binding. These seven compounds were adequately profiled to be potential antivirals via PASS predictions and structural similarity searches. All seven potential lead compounds were scored Pa > Pi for antiviral activity while ZINC000001632866 and ZINC000015151344 were predicted as poxvirus inhibitors with Pa values of 0.315 and 0.215, and Pi values of 0.052 and 0.136, respectively. Further experimental validations of the identified lead compounds are required to corroborate their predicted activity. These seven identified compounds represent solid footing for development of antivirals against MPXV and other orthopoxviruses.


Asunto(s)
Monkeypox virus , Profilinas , Simulación del Acoplamiento Molecular , Benzamidas , Antivirales/farmacología
12.
Issues Ment Health Nurs ; 29(5): 455-69, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18437606

RESUMEN

During May, 2006, on one acute mental health inpatient unit, nursing staff evaluated each patient three times a day (i.e., once each nursing shift) using the Broset Violence Checklist (BVC). Associated data were collected using the Staff Observation and Aggression Scale-Revised (SOAS-R) if an adverse incident occurred. At the end of the data collection period, the nursing staff were asked to complete a short questionnaire anonymously to evaluate how useful they had found the instruments. N = 93 patients were admitted to the unit during the month of study. Seven incidents were reported using the SOAS-R. A slight trend was noted for higher BVC score in aggressive patients. A potential high occurrence of underreporting on incidents was observed. There was limited feedback data from nursing staff at the end of the study, but the responses received were encouraging for continued use of the instruments in practice. The pilot study fulfilled its purpose in two ways. First, it allowed staff on the unit to experience using structured instruments to support their practice. Second, it allowed an opportunity to raise awareness of potential underreporting and tolerance of aggression on the unit.


Asunto(s)
Trastornos Mentales , Gestión de Riesgos , Violencia , Enfermedad Aguda , Adulto , Femenino , Hospitalización , Humanos , Masculino , Trastornos Mentales/enfermería , Trastornos Mentales/psicología , Trastornos Mentales/rehabilitación
13.
Virus Res ; 203: 24-35, 2015 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-25796212

RESUMEN

Mechanisms of reproductive failure resulting from infection with porcine reproductive and respiratory syndrome virus (PRRSV) are still poorly understood. Presented herein are the results of a side-by-side evaluation of the pathogenicity of three type 2 PRRSV strains in a reproductive model, from a pilot study used to develop experimental conditions and laboratory methods for a larger experiment. Pregnant gilts were experimentally infected with PRRSV at gestation day 85 or served as uninfected negative controls. After 21 days, all gilts and fetuses were necropsied. Clinical signs, litter outcome, viral load, cytokine levels, and pathology were compared from samples collected among pigs exposed to the three PRRSV strains. Based on differences in histologic lesions, and fetal weights, and numeric differences in gilt serum cytokine levels, litter outcome and virus replication in fetal tissues KS06-483 appeared less virulent than NVSL 97-7895 and KS06-72109 isolates. Levels of chemokine ligand 2 (CCL2), interferon alpha (IFNα), and interferon gamma (IFNγ) were increased in PPRRSV-infected compared to non-infected gilts (0.01 > P < 0.06). Inoculation with NVSL 97-7895 induced higher levels of all three cytokines. All three PRRSV isolates were able to induce high mean viral load in individual litters, which was closely related to the proportion of PRRSV positive fetuses in the litter. Viral load in fetal samples was also positively associated with viral load at the maternal-fetal interface. All but one dead fetus were positive for PRRSV RNA, and higher concentrations of PRRSV RNA in fetal thymus increased the odds of fetal death. Our results suggest that virus replication in fetal tissues and the maternal-fetal interface, but not in other gilt tissues, are important for the outcome of reproductive PRRS. Additionally, our data indicate that umbilical lesions decreased corresponding to the use of pentobarbital sedation prior to euthanasia of pregnant gilts by captive bolt.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina/patología , Virus del Síndrome Respiratorio y Reproductivo Porcino/patogenicidad , Complicaciones Infecciosas del Embarazo/veterinaria , Experimentación Animal , Estructuras Animales/patología , Animales , Citocinas/sangre , Femenino , Histocitoquímica , Proyectos Piloto , Síndrome Respiratorio y de la Reproducción Porcina/virología , Embarazo , Complicaciones Infecciosas del Embarazo/patología , Complicaciones Infecciosas del Embarazo/virología , Porcinos , Carga Viral , Virulencia
14.
Gene ; 285(1-2): 183-91, 2002 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-12039045

RESUMEN

The E2 enzyme, Ubc13, and the E2 enzyme variants, Uevs, form stable, high affinity complexes for the assembly of Lys63-linked ubiquitin chains. This process is involved in error-free DNA postreplication repair, the activation of kinases in the NF-kappaB signaling pathway and possibly other cellular processes. To further investigate the roles played by Ubc13 in a whole animal model, we report here the molecular cloning of mouse UBC13 and show for the first time that a mammalian UBC13 gene is able to complement the yeast ubc13 null mutant. Furthermore, in vitro analyses and a yeast two-hybrid assay show that mUbc13 is able to form stable complexes with various Uevs. In the presence of E1 and ATP, mUbc13 forms thiolesters with ubiquitin; however, the formation of Lys63-linked di-ubiquitin and multi-ubiquitin chains is dependent on Uevs. These results suggest that the roles of UBC13 are conserved throughout eukaryotes and that the mouse is an appropriate model for the study of Ubc13-mediated Lys63-linked ubiquitin signaling pathways in humans.


Asunto(s)
Reparación del ADN , Replicación del ADN/genética , Ligasas/genética , Lisina/metabolismo , Factores de Transcripción , Ubiquitina/metabolismo , Secuencia de Aminoácidos , Animales , ADN Complementario/química , ADN Complementario/genética , Evolución Molecular , Expresión Génica , Prueba de Complementación Genética , Humanos , Ligasas/metabolismo , Ligasas/fisiología , Masculino , Ratones , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Transactivadores/genética , Transactivadores/metabolismo , Transcripción Genética , Técnicas del Sistema de Dos Híbridos , Enzimas Ubiquitina-Conjugadoras
15.
PLoS One ; 9(10): e109541, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25275491

RESUMEN

The severity of porcine reproductive and respiratory syndrome was compared in pregnant gilts originating from high and low birth weight litters. One-hundred and eleven pregnant gilts experimentally infected with porcine reproductive and respiratory syndrome virus on gestation day 85 (±1) were necropsied along with their fetuses 21 days later. Ovulation rates and litter size did not differ between groups, but fetuses from low birth weight gilts were shorter, lighter and demonstrated evidence of asymmetric growth with large brain:organ weight ratios (i.e. brain sparing). The number of intrauterine growth retarded fetuses, defined by brain:organ weight ratios greater than 1 standard deviation from the mean, was significantly greater in low, compared to high, birth weight gilts. Although γδ T cells significantly decreased over time in high compared to low birth weight gilts, viral load in serum and tissues, gilt serum cytokine levels, and litter outcome, including the percent dead fetuses per litter, did not differ by birth weight group. Thus, this study provided no substantive evidence that the severity of porcine reproductive and respiratory syndrome is affected by dam birth weight. However, intrauterine growth retarded fetuses had lower viral loads in both fetal thymus and in endometrium adjacent to the umbilical stump. Crown rump length did not significantly differ between fetuses that survived and those that died at least one week prior to termination. Taken together, this study clearly demonstrates that birth weight is a transgenerational trait in pigs, and provides evidence that larger fetuses are more susceptible to transplacental PRRSv infection.


Asunto(s)
Retardo del Crecimiento Fetal/veterinaria , Síndrome Respiratorio y de la Reproducción Porcina/patología , Virus del Síndrome Respiratorio y Reproductivo Porcino/aislamiento & purificación , Complicaciones Infecciosas del Embarazo/veterinaria , Porcinos/virología , Animales , Peso al Nacer , Femenino , Retardo del Crecimiento Fetal/patología , Retardo del Crecimiento Fetal/virología , Feto/virología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Embarazo , Complicaciones Infecciosas del Embarazo/patología , Complicaciones Infecciosas del Embarazo/virología
16.
PLoS One ; 9(4): e96104, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24756023

RESUMEN

In spite of extensive research, the mechanisms of reproductive disease associated with Porcine Reproductive and Respiratory Syndrome virus (PRRSv) are still poorly understood. The objectives of this large scale study were to evaluate associations between viral load and fetal preservation, determine the impact of type 2 PRRSv on fetal weights, and investigate changes in ORF5 PRRSv genome in dams and fetuses during a 21-day period following challenge. At gestation day 85 (±1), 114 gilts were experimentally infected with type 2 PRRSv, while 19 gilts served as reference controls. At necropsy, fetuses were categorized according to their preservation status and tissue samples were collected. PRRSv RNA concentrations were measured in gilt serum collected on days 0, 2, 6, and 21 post-infection, as well as in gilt and fetal tissues collected at termination. Fetal mortality was 41±22.8% in PRRS infected litters. Dead fetuses appeared to cluster in some litters but appeared solitary or random in others. Nine percent of surviving piglets were meconium-stained. PRRSv RNA concentration in fetal thymus, fetal serum and endometrium differed significantly across preservation category and was greatest in tissues of meconium-stained fetuses. This, together with the virtual absence of meconium staining in non-infected litters indicates it is an early pathological condition of reproductive PRRS. Viral load in fetal thymus and in fetal serum was positively associated with viral load in endometrium, suggesting the virus exploits dynamic linkages between individual maternal-fetal compartments. Point mutations in ORF5 sequences from gilts and fetuses were randomly located in 20 positions in ORF5, but neither nucleotide nor amino acid substitutions were associated with fetal preservation. PRRSv infection decreased the weights of viable fetuses by approximately 17%. The considerable variation in gilt and fetal outcomes provides tremendous opportunity for more detailed investigations of potential mechanisms and single nucleotide polymorphisms associated with fetal death.


Asunto(s)
Aborto Veterinario/virología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Proteínas del Envoltorio Viral/genética , Animales , Endometrio/virología , Femenino , Peso Fetal , Estudios de Asociación Genética , Genotipo , Edad Gestacional , Fenotipo , Polimorfismo de Nucleótido Simple , Síndrome Respiratorio y de la Reproducción Porcina/mortalidad , Embarazo , ARN Viral/genética , Análisis de Secuencia de ADN , Sus scrofa , Porcinos , Timo/virología , Carga Viral
17.
Mol Cell Biol ; 28(19): 6104-12, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18678647

RESUMEN

The E2 ubiquitin-conjugating enzyme UBC13 plays pivotal roles in diverse biological processes. Recent studies have elucidated that UBC13, in concert with the E3 ubiquitin ligase RNF8, propagates the DNA damage signal via a ubiquitylation-dependent signaling pathway. However, mechanistically how UBC13 mediates its role in promoting checkpoint protein assembly and its genetic requirement for E2 variants remain elusive. Here we provide evidence to support the idea that the E3 ubiquitin ligase complex RNF8-UBC13 functions independently of E2 variants and is sufficient in facilitating ubiquitin conjugations and accumulation of DNA damage mediator 53BP1 at DNA breaks. The RNF8 RING domain serves as the molecular platform to anchor UBC13 at the damaged chromatin, where localized ubiquitylation events allow sustained accumulation of checkpoint proteins. Intriguingly, we found that only a group of RING domains derived from E3 ubiquitin ligases, which have been shown to interact with UBC13, enabled UBC13-mediated FK2 and 53BP1 focus formation at DNA breaks. We propose that the RNF8 RING domain selects and loads a subset of UBC13 molecules, distinct from those that exist as heterodimers, onto sites of double-strand breaks, which facilitates the amplification of DNA damage signals.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Animales , Línea Celular , Daño del ADN , Humanos , Ratones , Transducción de Señal , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA