Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Genes Dev ; 37(21-24): 998-1016, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38092521

RESUMEN

Reductions in brain kynurenic acid levels, a neuroinhibitory metabolite, improve cognitive function in diverse organisms. Thus, modulation of kynurenic acid levels is thought to have therapeutic potential in a range of brain disorders. Here we report that the steroid 5-androstene 3ß, 17ß-diol (ADIOL) reduces kynurenic acid levels and promotes associative learning in Caenorhabditis elegans We identify the molecular mechanisms through which ADIOL links peripheral metabolic pathways to neural mechanisms of learning capacity. Moreover, we show that in aged animals, which normally experience rapid cognitive decline, ADIOL improves learning capacity. The molecular mechanisms that underlie the biosynthesis of ADIOL as well as those through which it promotes kynurenic acid reduction are conserved in mammals. Thus, rather than a minor intermediate in the production of sex steroids, ADIOL is an endogenous hormone that potently regulates learning capacity by causing reductions in neural kynurenic acid levels.


Asunto(s)
Ácido Quinurénico , Esteroides , Animales , Ácido Quinurénico/farmacología , Hormonas , Mamíferos
2.
Cell ; 160(1-2): 119-31, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25594177

RESUMEN

The kynurenine pathway of tryptophan metabolism is involved in the pathogenesis of several brain diseases, but its physiological functions remain unclear. We report that kynurenic acid, a metabolite in this pathway, functions as a regulator of food-dependent behavioral plasticity in C. elegans. The experience of fasting in C. elegans alters a variety of behaviors, including feeding rate, when food is encountered post-fast. Levels of neurally produced kynurenic acid are depleted by fasting, leading to activation of NMDA-receptor-expressing interneurons and initiation of a neuropeptide-y-like signaling axis that promotes elevated feeding through enhanced serotonin release when animals re-encounter food. Upon refeeding, kynurenic acid levels are eventually replenished, ending the elevated feeding period. Because tryptophan is an essential amino acid, these findings suggest that a physiological role of kynurenic acid is in directly linking metabolism to activity of NMDA and serotonergic circuits, which regulate a broad range of behaviors and physiologies.


Asunto(s)
Conducta Animal , Caenorhabditis elegans/metabolismo , Conducta Alimentaria , Ácido Quinurénico/metabolismo , Animales , Señales (Psicología) , Ayuno , Interneuronas/metabolismo , Quinurenina/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Serotonina , Transducción de Señal , Transaminasas/metabolismo , Triptófano/metabolismo
3.
Genes Dev ; 34(15-16): 1033-1038, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32675325

RESUMEN

Kynurenic acid (KynA) levels link peripheral metabolic status to neural functions including learning and memory. Since neural KynA levels dampen learning capacity, KynA reduction has been proposed as a therapeutic strategy for conditions of cognitive deficit such as neurodegeneration. While KynA is generated locally within the nervous system, its precursor, kynurenine (Kyn), is largely derived from peripheral resources. The mechanisms that import Kyn into the nervous system are poorly understood. Here, we provide genetic, anatomical, biochemical, and behavioral evidence showing that in C. elegans an ortholog of the human LAT1 transporter, AAT-1, imports Kyn into sites of KynA production.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/metabolismo , Ácido Quinurénico/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/fisiología , Neuronas/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ingestión de Alimentos , Quinurenina/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/genética , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Aprendizaje/fisiología , Mutación
4.
Genes Dev ; 32(1): 14-19, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29386332

RESUMEN

A general feature of animal aging is decline in learning and memory. Here we show that in Caenorhabditis elegans, a significant portion of this decline is due to accumulation of kynurenic acid (KYNA), an endogenous antagonist of neural N-methyl-D-aspartate receptors (NMDARs). We show that activation of a specific pair of interneurons either through genetic means or by depletion of KYNA significantly improves learning capacity in aged animals even when the intervention is applied in aging animals. KYNA depletion also improves memory. We show that insulin signaling is one factor in KYNA accumulation.


Asunto(s)
Envejecimiento/metabolismo , Ácido Quinurénico/metabolismo , Aprendizaje , Memoria , Envejecimiento/psicología , Animales , Caenorhabditis elegans/metabolismo , Insulina/metabolismo , Transducción de Señal
5.
Annu Rev Genet ; 49: 413-38, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26473379

RESUMEN

The compact nervous system of Caenorhabditis elegans and its genetic tractability are features that make this organism highly suitable for investigating energy balance in an animal system. Here, we focus on molecular components and organizational principles emerging from the investigation of pathways that largely originate in the nervous system and regulate feeding behavior but also peripheral fat regulation through neuroendocrine signaling. We provide an overview of studies aimed at understanding how C. elegans integrate internal and external cues in feeding behavior. We highlight some of the similarities and differences in energy balance between C. elegans and mammals. We also provide our perspective on unresolved issues, both conceptual and technical, that we believe have hampered critical evaluation of findings relevant to fat regulation in C. elegans.


Asunto(s)
Tejido Adiposo/fisiología , Caenorhabditis elegans/fisiología , Conducta Alimentaria/fisiología , Fenómenos Fisiológicos del Sistema Nervioso , Animales , Caenorhabditis elegans/microbiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Metabolismo Energético , Retroalimentación Fisiológica , Sistemas Neurosecretores/fisiología , Octopamina/metabolismo , Serotonina/metabolismo , Transducción de Señal , Tiramina/metabolismo
6.
Nat Chem Biol ; 16(10): 1087-1095, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32572275

RESUMEN

Caenorhabditis elegans serves as a model for understanding adiposity and its connections to aging. Current methodologies do not distinguish between fats serving the energy needs of the parent, akin to mammalian adiposity, from those that are distributed to the progeny, making it difficult to accurately interpret the physiological implications of fat content changes induced by external perturbations. Using spectroscopic coherent Raman imaging, we determine the protein content, chemical profiles and dynamics of lipid particles in live animals. We find fat particles in the adult intestine to be diverse, with most destined for the developing progeny. In contrast, the skin-like epidermis contains fats that are the least heterogeneous, the least dynamic and have high triglyceride content. These attributes are most consistent with stored somatic energy reservoirs. These results challenge the prevailing practice of assessing C. elegans adiposity by measurements that are dominated by the intestinal fat content.


Asunto(s)
Caenorhabditis elegans/fisiología , Lípidos/química , Espectrometría Raman/métodos , Animales , Metabolismo de los Lípidos/fisiología
7.
PLoS Biol ; 17(12): e3000242, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31805041

RESUMEN

The ability to coordinate behavioral responses with metabolic status is fundamental to the maintenance of energy homeostasis. In numerous species including Caenorhabditis elegans and mammals, neural serotonin signaling regulates a range of food-related behaviors. However, the mechanisms that integrate metabolic information with serotonergic circuits are poorly characterized. Here, we identify metabolic, molecular, and cellular components of a circuit that links peripheral metabolic state to serotonin-regulated behaviors in C. elegans. We find that blocking the entry of fatty acyl coenzyme As (CoAs) into peroxisomal ß-oxidation in the intestine blunts the effects of neural serotonin signaling on feeding and egg-laying behaviors. Comparative genomics and metabolomics revealed that interfering with intestinal peroxisomal ß-oxidation results in a modest global transcriptional change but significant changes to the metabolome, including a large number of changes in ascaroside and phospholipid species, some of which affect feeding behavior. We also identify body cavity neurons and an ether-a-go-go (EAG)-related potassium channel that functions in these neurons as key cellular components of the circuitry linking peripheral metabolic signals to regulation of neural serotonin signaling. These data raise the possibility that the effects of serotonin on satiety may have their origins in feedback, homeostatic metabolic responses from the periphery.


Asunto(s)
Acilcoenzima A/metabolismo , Conducta Alimentaria/fisiología , Serotonina/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Ácidos Grasos/metabolismo , Retroalimentación , Homeostasis , Intestinos/fisiología , Neuronas/metabolismo , Oxidación-Reducción , Peroxisomas/metabolismo , Transducción de Señal
8.
PLoS Genet ; 15(8): e1008295, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398187

RESUMEN

The progressive failure of protein homeostasis is a hallmark of aging and a common feature in neurodegenerative disease. As the enzymes executing the final stages of autophagy, lysosomal proteases are key contributors to the maintenance of protein homeostasis with age. We previously reported that expression of granulin peptides, the cleavage products of the neurodegenerative disease protein progranulin, enhance the accumulation and toxicity of TAR DNA binding protein 43 (TDP-43) in Caenorhabditis elegans (C. elegans). In this study we show that C. elegans granulins are produced in an age- and stress-dependent manner. Granulins localize to the endolysosomal compartment where they impair lysosomal protease expression and activity. Consequently, protein homeostasis is disrupted, promoting the nuclear translocation of the lysosomal transcription factor HLH-30/TFEB, and prompting cells to activate a compensatory transcriptional program. The three C. elegans granulin peptides exhibited distinct but overlapping functional effects in our assays, which may be due to amino acid composition that results in distinct electrostatic and hydrophobicity profiles. Our results support a model in which granulin production modulates a critical transition between the normal, physiological regulation of protease activity and the impairment of lysosomal function that can occur with age and disease.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/genética , Granulinas/metabolismo , Lisosomas/metabolismo , Enfermedades Neurodegenerativas/genética , Envejecimiento/genética , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Modelos Animales de Enfermedad , Endopeptidasas/metabolismo , Regulación de la Expresión Génica , Granulinas/genética , Humanos , Enfermedades Neurodegenerativas/patología , Estrés Fisiológico/genética
9.
Hum Mol Genet ; 28(9): 1498-1514, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30590647

RESUMEN

Mutations in the microtubule-associated protein tau (MAPT) underlie multiple neurodegenerative disorders, yet the pathophysiological mechanisms are unclear. A novel variant in MAPT resulting in an alanine to threonine substitution at position 152 (A152T tau) has recently been described as a significant risk factor for both frontotemporal lobar degeneration and Alzheimer's disease. Here we use complementary computational, biochemical, molecular, genetic and imaging approaches in Caenorhabditis elegans and mouse models to interrogate the effects of the A152T variant on tau function. In silico analysis suggests that a threonine at position 152 of tau confers a new phosphorylation site. This finding is borne out by mass spectrometric survey of A152T tau phosphorylation in C. elegans and mouse. Optical pulse-chase experiments of Dendra2-tau demonstrate that A152T tau and phosphomimetic A152E tau exhibit increased diffusion kinetics and the ability to traverse across the axon initial segment more efficiently than wild-type (WT) tau. A C. elegans model of tauopathy reveals that A152T and A152E tau confer patterns of developmental toxicity distinct from WT tau, likely due to differential effects on retrograde axonal transport. These data support a role for phosphorylation of the variant threonine in A152T tau toxicity and suggest a mechanism involving impaired retrograde axonal transport contributing to human neurodegenerative disease.


Asunto(s)
Alelos , Sustitución de Aminoácidos , Variación Genética , Proteínas tau/genética , Proteínas tau/metabolismo , Animales , Animales Modificados Genéticamente , Transporte Axonal , Axones/metabolismo , Caenorhabditis elegans , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Humanos , Ratones , Mutación , Fosforilación , Unión Proteica , Vesículas Sinápticas/metabolismo , Tauopatías/etiología , Tauopatías/metabolismo , Tauopatías/patología
10.
PLoS Biol ; 15(8): e2002032, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28763436

RESUMEN

In species ranging from humans to Caenorhabditis elegans, dietary restriction (DR) grants numerous benefits, including enhanced learning. The precise mechanisms by which DR engenders benefits on processes related to learning remain poorly understood. As a result, it is unclear whether the learning benefits of DR are due to myriad improvements in mechanisms that collectively confer improved cellular health and extension of organismal lifespan or due to specific neural mechanisms. Using an associative learning paradigm in C. elegans, we investigated the effects of DR as well as manipulations of insulin, mechanistic target of rapamycin (mTOR), AMP-activated protein kinase (AMPK), and autophagy pathways-processes implicated in longevity-on learning. Despite their effects on a vast number of molecular effectors, we found that the beneficial effects on learning elicited by each of these manipulations are fully dependent on depletion of kynurenic acid (KYNA), a neuroinhibitory metabolite. KYNA depletion then leads, in an N-methyl D-aspartate receptor (NMDAR)-dependent manner, to activation of a specific pair of interneurons with a critical role in learning. Thus, fluctuations in KYNA levels emerge as a previously unidentified molecular mechanism linking longevity and metabolic pathways to neural mechanisms of learning. Importantly, KYNA levels did not alter lifespan in any of the conditions tested. As such, the beneficial effects of DR on learning can be attributed to changes in a nutritionally sensitive metabolite with neuromodulatory activity rather than indirect or secondary consequences of improved health and extended longevity.


Asunto(s)
Aprendizaje por Asociación/fisiología , Restricción Calórica , Interneuronas/metabolismo , Ácido Quinurénico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Caenorhabditis elegans , Longevidad
11.
Mol Cell ; 40(3): 465-80, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-21070972

RESUMEN

We show that Ydr049 (renamed VCP/Cdc48-associated mitochondrial stress-responsive--Vms1), a member of an unstudied pan-eukaryotic protein family, translocates from the cytosol to mitochondria upon mitochondrial stress. Cells lacking Vms1 show progressive mitochondrial failure, hypersensitivity to oxidative stress, and decreased chronological life span. Both yeast and mammalian Vms1 stably interact with Cdc48/VCP/p97, a component of the ubiquitin/proteasome system with a well-defined role in endoplasmic reticulum-associated protein degradation (ERAD), wherein misfolded ER proteins are degraded in the cytosol. We show that oxidative stress triggers mitochondrial localization of Cdc48 and this is dependent on Vms1. When this system is impaired by mutation of Vms1, ubiquitin-dependent mitochondrial protein degradation, mitochondrial respiratory function, and cell viability are compromised. We demonstrate that Vms1 is a required component of an evolutionarily conserved system for mitochondrial protein degradation, which is necessary to maintain mitochondrial, cellular, and organismal viability.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Procesamiento Proteico-Postraduccional , Estrés Fisiológico , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Eliminación de Gen , Humanos , Peróxido de Hidrógeno/farmacología , Longevidad/efectos de los fármacos , Ratones , Viabilidad Microbiana/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Unión Proteica/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirolimus/farmacología , Estrés Fisiológico/efectos de los fármacos , Ubiquitina/metabolismo , Proteína que Contiene Valosina
12.
PLoS Genet ; 11(11): e1005627, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26540106

RESUMEN

Mutations in genes encoding cilia proteins cause human ciliopathies, diverse disorders affecting many tissues. Individual genes can be linked to ciliopathies with dramatically different phenotypes, suggesting that genetic modifiers may participate in their pathogenesis. The ciliary transition zone contains two protein complexes affected in the ciliopathies Meckel syndrome (MKS) and nephronophthisis (NPHP). The BBSome is a third protein complex, affected in the ciliopathy Bardet-Biedl syndrome (BBS). We tested whether mutations in MKS, NPHP and BBS complex genes modify the phenotypic consequences of one another in both C. elegans and mice. To this end, we identified TCTN-1, the C. elegans ortholog of vertebrate MKS complex components called Tectonics, as an evolutionarily conserved transition zone protein. Neither disruption of TCTN-1 alone or together with MKS complex components abrogated ciliary structure in C. elegans. In contrast, disruption of TCTN-1 together with either of two NPHP complex components, NPHP-1 or NPHP-4, compromised ciliary structure. Similarly, disruption of an NPHP complex component and the BBS complex component BBS-5 individually did not compromise ciliary structure, but together did. As in nematodes, disrupting two components of the mouse MKS complex did not cause additive phenotypes compared to single mutants. However, disrupting both Tctn1 and either Nphp1 or Nphp4 exacerbated defects in ciliogenesis and cilia-associated developmental signaling, as did disrupting both Tctn1 and the BBSome component Bbs1. Thus, we demonstrate that ciliary complexes act in parallel to support ciliary function and suggest that human ciliopathy phenotypes are altered by genetic interactions between different ciliary biochemical complexes.


Asunto(s)
Cilios/genética , Transducción de Señal , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cilios/metabolismo , Humanos
13.
Crit Rev Biochem Mol Biol ; 50(1): 69-84, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25228063

RESUMEN

C. elegans provides a genetically tractable system for deciphering the homeostatic mechanisms that underlie fat regulation in intact organisms. Here, we provide an overview of the recent advances in the C. elegans fat field with particular attention to studies of C. elegans lipid droplets, the complex links between lipases, autophagy, and lifespan, and analyses of key transcriptional regulatory mechanisms that coordinate lipid homeostasis. These studies demonstrate the ancient origins of mammalian and C. elegans fat regulatory pathways and highlight how C. elegans is being used to identify and analyze novel lipid pathways that are then shown to function similarly in mammals. Despite its many advantages, study of fat regulation in C. elegans is currently faced with a number of conceptual and methodological challenges. We critically evaluate some of the assumptions in the field and highlight issues that we believe should be taken into consideration when interpreting lipid content data in C. elegans.


Asunto(s)
Caenorhabditis elegans/metabolismo , Metabolismo de los Lípidos , Lípidos/análisis , Animales , Autofagia , Caenorhabditis elegans/fisiología , Regulación de la Expresión Génica , Mucosa Intestinal/metabolismo , Lipasa/metabolismo
14.
PLoS Genet ; 10(6): e1004394, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24921650

RESUMEN

AMP-activated protein kinase (AMPK) is an evolutionarily conserved master regulator of metabolism and a therapeutic target in type 2 diabetes. As an energy sensor, AMPK activity is responsive to both metabolic inputs, for instance the ratio of AMP to ATP, and numerous hormonal cues. As in mammals, each of two genes, aak-1 and aak-2, encode for the catalytic subunit of AMPK in C. elegans. Here we show that in C. elegans loss of aak-2 mimics the effects of elevated serotonin signaling on fat reduction, slowed movement, and promoting exit from dauer arrest. Reconstitution of aak-2 in only the nervous system restored wild type fat levels and movement rate to aak-2 mutants and reconstitution in only the ASI neurons was sufficient to significantly restore dauer maintenance to the mutant animals. As in elevated serotonin signaling, inactivation of AAK-2 in the ASI neurons caused enhanced secretion of dense core vesicles from these neurons. The ASI neurons are the site of production of the DAF-7 TGF-ß ligand and the DAF-28 insulin, both of which are secreted by dense core vesicles and play critical roles in whether animals stay in dauer or undergo reproductive development. These findings show that elevated levels of serotonin promote enhanced secretions of systemic regulators of pro-growth and differentiation pathways through inactivation of AAK-2. As such, AMPK is not only a recipient of hormonal signals but can also be an upstream regulator. Our data suggest that some of the physiological phenotypes previously attributed to peripheral AAK-2 activity on metabolic targets may instead be due to the role of this kinase in neural serotonin signaling.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/enzimología , Metabolismo de los Lípidos/genética , Sistema Nervioso/enzimología , Proteínas Serina-Treonina Quinasas/genética , Serotonina/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/biosíntesis , Metabolismo Energético/genética , Alimentos , Regulación del Desarrollo de la Expresión Génica , Genes de Helminto/genética , Insulinas , Lípidos/biosíntesis , Longevidad/genética , Sistema Nervioso/citología , Interferencia de ARN , ARN Interferente Pequeño , Receptor de Insulina/biosíntesis , Vesículas Secretoras/metabolismo , Factor de Crecimiento Transformador beta/biosíntesis , Triptófano Hidroxilasa/genética
15.
Proc Natl Acad Sci U S A ; 111(27): 9983-8, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-24961373

RESUMEN

Organic cation transporter 1, OCT1 (SLC22A1), is the major hepatic uptake transporter for metformin, the most prescribed antidiabetic drug. However, its endogenous role is poorly understood. Here we show that similar to metformin treatment, loss of Oct1 caused an increase in the ratio of AMP to ATP, activated the energy sensor AMP-activated kinase (AMPK), and substantially reduced triglyceride (TG) levels in livers from healthy and leptin-deficient mice. Conversely, livers of human OCT1 transgenic mice fed high-fat diets were enlarged with high TG levels. Metabolomic and isotopic uptake methods identified thiamine as a principal endogenous substrate of OCT1. Thiamine deficiency enhanced the phosphorylation of AMPK and its downstream target, acetyl-CoA carboxylase. Metformin and the biguanide analog, phenformin, competitively inhibited OCT1-mediated thiamine uptake. Acute administration of metformin to wild-type mice reduced intestinal accumulation of thiamine. These findings suggest that OCT1 plays a role in hepatic steatosis through modulation of energy status. The studies implicate OCT1 as well as metformin in thiamine disposition, suggesting an intriguing and parallel mechanism for metformin and its major hepatic transporter in metabolic function.


Asunto(s)
Hígado Graso/fisiopatología , Hipoglucemiantes/farmacología , Metformina/farmacología , Factor 1 de Transcripción de Unión a Octámeros/fisiología , Tiamina/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Proteínas Portadoras/efectos de los fármacos , Proteínas Portadoras/metabolismo , Proteínas Portadoras/fisiología , Ratones , Ratones Noqueados , Factor 1 de Transcripción de Unión a Octámeros/efectos de los fármacos , Factor 1 de Transcripción de Unión a Octámeros/genética , Factor 1 de Transcripción de Unión a Octámeros/metabolismo , Oxidación-Reducción
16.
PLoS Biol ; 11(11): e1001712, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24260022

RESUMEN

Phenotypic screens can identify molecules that are at once penetrant and active on the integrated circuitry of a whole cell or organism. These advantages are offset by the need to identify the targets underlying the phenotypes. Additionally, logistical considerations limit screening for certain physiological and behavioral phenotypes to organisms such as zebrafish and C. elegans. This further raises the challenge of elucidating whether compound-target relationships found in model organisms are preserved in humans. To address these challenges we searched for compounds that affect feeding behavior in C. elegans and sought to identify their molecular mechanisms of action. Here, we applied predictive chemoinformatics to small molecules previously identified in a C. elegans phenotypic screen likely to be enriched for feeding regulatory compounds. Based on the predictions, 16 of these compounds were tested in vitro against 20 mammalian targets. Of these, nine were active, with affinities ranging from 9 nM to 10 µM. Four of these nine compounds were found to alter feeding. We then verified the in vitro findings in vivo through genetic knockdowns, the use of previously characterized compounds with high affinity for the four targets, and chemical genetic epistasis, which is the effect of combined chemical and genetic perturbations on a phenotype relative to that of each perturbation in isolation. Our findings reveal four previously unrecognized pathways that regulate feeding in C. elegans with strong parallels in mammals. Together, our study addresses three inherent challenges in phenotypic screening: the identification of the molecular targets from a phenotypic screen, the confirmation of the in vivo relevance of these targets, and the evolutionary conservation and relevance of these targets to their human orthologs.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/metabolismo , Simulación por Computador , Evaluación Preclínica de Medicamentos , Humanos , Peristaltismo/efectos de los fármacos , Faringe/efectos de los fármacos , Fenotipo , Quinolinas/farmacología , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/metabolismo , Bibliotecas de Moléculas Pequeñas
17.
PLoS Genet ; 9(12): e1003992, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24348269

RESUMEN

Individual metazoan transcription factors (TFs) regulate distinct sets of genes depending on cell type and developmental or physiological context. The precise mechanisms by which regulatory information from ligands, genomic sequence elements, co-factors, and post-translational modifications are integrated by TFs remain challenging questions. Here, we examine how a single regulatory input, sumoylation, differentially modulates the activity of a conserved C. elegans nuclear hormone receptor, NHR-25, in different cell types. Through a combination of yeast two-hybrid analysis and in vitro biochemistry we identified the single C. elegans SUMO (SMO-1) as an NHR-25 interacting protein, and showed that NHR-25 is sumoylated on at least four lysines. Some of the sumoylation acceptor sites are in common with those of the NHR-25 mammalian orthologs SF-1 and LRH-1, demonstrating that sumoylation has been strongly conserved within the NR5A family. We showed that NHR-25 bound canonical SF-1 binding sequences to regulate transcription, and that NHR-25 activity was enhanced in vivo upon loss of sumoylation. Knockdown of smo-1 mimicked NHR-25 overexpression with respect to maintenance of the 3° cell fate in vulval precursor cells (VPCs) during development. Importantly, however, overexpression of unsumoylatable alleles of NHR-25 revealed that NHR-25 sumoylation is critical for maintaining 3° cell fate. Moreover, SUMO also conferred formation of a developmental time-dependent NHR-25 concentration gradient across the VPCs. That is, accumulation of GFP-tagged NHR-25 was uniform across VPCs at the beginning of development, but as cells began dividing, a smo-1-dependent NHR-25 gradient formed with highest levels in 1° fated VPCs, intermediate levels in 2° fated VPCs, and low levels in 3° fated VPCs. We conclude that sumoylation operates at multiple levels to affect NHR-25 activity in a highly coordinated spatial and temporal manner.


Asunto(s)
Diferenciación Celular/genética , Proteínas de Unión al ADN/genética , Sumoilación , Factores de Transcripción/genética , Vulva/crecimiento & desarrollo , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Unión al ADN/biosíntesis , Femenino , Regulación del Desarrollo de la Expresión Génica , Mapas de Interacción de Proteínas , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Transducción de Señal/genética , Factores de Transcripción/biosíntesis , Vulva/citología
18.
PLoS Biol ; 9(12): e1001219, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22180729

RESUMEN

Bardet-Biedl syndrome, BBS, is a rare autosomal recessive disorder with clinical presentations including polydactyly, retinopathy, hyperphagia, obesity, short stature, cognitive impairment, and developmental delays. Disruptions of BBS proteins in a variety of organisms impair cilia formation and function and the multi-organ defects of BBS have been attributed to deficiencies in various cilia-associated signaling pathways. In C. elegans, bbs genes are expressed exclusively in the sixty ciliated sensory neurons of these animals and bbs mutants exhibit sensory defects as well as body size, feeding, and metabolic abnormalities. Here we show that in contrast to many other cilia-defective mutants, C. elegans bbs mutants exhibit increased release of dense-core vesicles and organism-wide phenotypes associated with enhanced activities of insulin, neuropeptide, and biogenic amine signaling pathways. We show that the altered body size, feeding, and metabolic abnormalities of bbs mutants can be corrected to wild-type levels by abrogating the enhanced secretion of dense-core vesicles without concomitant correction of ciliary defects. These findings expand the role of BBS proteins to the regulation of dense-core-vesicle exocytosis and suggest that some features of Bardet-Biedl Syndrome may be caused by excessive neuroendocrine secretion.


Asunto(s)
Síndrome de Bardet-Biedl/fisiopatología , Tamaño Corporal/genética , Cilios/fisiología , Conducta Alimentaria/fisiología , Animales , Síndrome de Bardet-Biedl/genética , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Línea Celular , Insulina/metabolismo , Secreción de Insulina , Glicoproteínas de Membrana/metabolismo , Ratones , Neuropéptidos/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Serotonina/fisiología
19.
Nat Chem Biol ; 7(4): 206-13, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21390037

RESUMEN

The regulation of energy homeostasis integrates diverse biological processes ranging from behavior to metabolism and is linked fundamentally to numerous disease states. To identify new molecules that can bypass homeostatic compensatory mechanisms of energy balance in intact animals, we screened for small-molecule modulators of Caenorhabditis elegans fat content. We report on several molecules that modulate fat storage without obvious deleterious effects on feeding, growth and reproduction. A subset of these compounds also altered fat storage in mammalian and insect cell culture. We found that one of the newly identified compounds exerts its effects in C. elegans through a pathway that requires previously undescribed functions of an AMP-activated kinase catalytic subunit and a transcription factor previously unassociated with fat regulation. Thus, our strategy identifies small molecules that are effective within the context of intact animals and reveals relationships between new pathways that operate across phyla to influence energy homeostasis.


Asunto(s)
Caenorhabditis elegans/metabolismo , Grasas/metabolismo , Metabolismo de los Lípidos , Proteínas Quinasas Activadas por AMP/metabolismo , Tejido Adiposo/metabolismo , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Catálisis , Metabolismo Energético , Homeostasis
20.
Front Chem ; 11: 1161775, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37123874

RESUMEN

Fat metabolism is an important modifier of aging and longevity in Caenorhabditis elegans. Given the anatomy and hermaphroditic nature of C. elegans, a major challenge is to distinguish fats that serve the energetic needs of the parent from those that are allocated to the progeny. Broadband coherent anti-Stokes Raman scattering (BCARS) microscopy has revealed that the composition and dynamics of lipid particles are heterogeneous both within and between different tissues of this organism. Using BCARS, we have previously succeeded in distinguishing lipid-rich particles that serve as energetic reservoirs of the parent from those that are destined for the progeny. While BCARS microscopy produces high-resolution images with very high information content, it is not yet a widely available platform. Here we report a new approach combining the lipophilic vital dye Nile Red and two-photon fluorescence lifetime imaging microscopy (2p-FLIM) for the in vivo discrimination of lipid particle sub-types. While it is widely accepted that Nile Red staining yields unreliable results for detecting lipid structures in live C. elegans due to strong interference of autofluorescence and non-specific staining signals, our results show that simple FLIM phasor analysis can effectively separate those signals and is capable of differentiating the non-polar lipid-dominant (lipid-storage), polar lipid-dominant (yolk lipoprotein) particles, and the intermediates that have been observed using BCARS microscopy. An advantage of this approach is that images can be acquired using common, commercially available 2p-FLIM systems within about 10% of the time required to generate a BCARS image. Our work provides a novel, broadly accessible approach for analyzing lipid-containing structures in a complex, live whole organism context.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA