Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Great Lakes Res ; 47(6): 1656-1670, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-35967967

RESUMEN

Eutrophication and excessive algal growth pose a threat on aquatic organisms and the health of the public, environment, and the economy. Understanding what drives excessive algal growth can inform mitigation measures and aid in advance planning to minimize impacts. We demonstrate how simulated data from weather, hydrological, and agroecosystem numerical prediction models can be combined with machine learning (ML) to assess and predict Chlorophyll a (Chl a) concentrations, a proxy for lake eutrophication and algal biomass. The study area is Lake Erie for a 16-year period, 2002-2017. A total of 20 environmental variables from linked and coupled physical models are used as input features to train the ML model with Chl a observations from 16 measuring stations. Included are meteorological variables from the Weather Research and Forecasting (WRF) model, hydrological variables from the Variable Infiltration Capacity (VIC) model, and agricultural management practice variables from the Environmental Policy Integrated Climate (EPIC) agroecosystem model. The consolidation of these variables is conducive to a successful prediction of Chl a. Aside from the synergistic effects that weather, hydrology, and fertilizers have on eutrophication and excessive algal growth, we found that the application of different forms of both P and N fertilizers are highly ranked for the prediction of Chl a concentration. The developed ML model successfully predicts Chl a with a coefficient of determination of 0.81, bias of -0.12 µg/l and RMSE of 4.97 µg/l. The developed ML-based modeling approach can be used for impact assessment of agriculture practices in a changing climate that affect Chl a concentrations in Lake Erie.

2.
Atmos Environ (1994) ; 199: 233-243, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275052

RESUMEN

Regional-scale air quality models and observations at routine air quality monitoring sites are used to determine attainment/non-attainment of the ozone air quality standard in the United States. In current regulatory applications, a regional-scale air quality model is applied for a base year and a future year with reduced emissions using the same meteorological conditions as those in the base year. Because of the stochastic nature of the atmosphere, the same meteorological conditions would not prevail in the future year. Therefore, we use multi-decadal observations to develop a new method for estimating the confidence bounds for the future ozone design value (based on the 4th highest value in the daily maximum 8-hr ozone concentration time series, DM8HR) for each emission loading scenario along with the probability of the design value exceeding a given ozone threshold concentration at all monitoring sites in the contiguous United States. To this end, we spectrally decompose the observed DM8HR ozone time series covering the period from 1981 to 2014 using the Kolmogorov-Zurbenko (KZ) filter and examine the variability in the relative strengths of the short-term variations (induced by synoptic-scale weather fluctuations; referred to as synoptic component, SY) and the long-term component (dictated by changes in emissions, seasonality and other slow-changing processes such as climate change; referred to as baseline component, BL). Results indicate that combining the projected change in the ozone baseline level with the adjusted synoptic forcing in historical ozone observations enables us to provide a probabilistic assessment of the efficacy of a selected emissions control strategy in complying with the ozone standard in future years. In addition, attainment demonstration is illustrated with a real-world application of the proposed methodology by using air quality model simulations, thereby helping build confidence in the use of regional-scale air quality models for supporting regulatory policies.

3.
Atmos Environ (1994) ; 164: 102-116, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-30078987

RESUMEN

Dynamic evaluation of the fully coupled Weather Research and Forecasting (WRF)- Community Multi-scale Air Quality (CMAQ) model ozone simulations over the contiguous United States (CONUS) using two decades of simulations covering the period from 1990 to 2010 is conducted to assess how well the changes in observed ozone air quality are simulated by the model. The changes induced by variations in meteorology and/or emissions are also evaluated during the same timeframe using spectral decomposition of observed and modeled ozone time series with the aim of identifying the underlying forcing mechanisms that control ozone exceedances and making informed recommendations for the optimal use of regional-scale air quality models. The evaluation is focused on the warm season's (i.e., May-September) daily maximum 8-hr (DM8HR) ozone concentrations, the 4th highest (4th) and average of top 10 DM8HR ozone values (top10), as well as the spectrally-decomposed components of the DM8HR ozone time series using the Kolmogorov-Zurbenko (KZ) filter. Results of the dynamic evaluation are presented for six regions in the U.S., consistent with the National Oceanic and Atmospheric Administration (NOAA) climatic regions. During the earlier 11-yr period (1990-2000), the simulated and observed trends are not statistically significant. During the more recent 2000-2010 period, all trends are statistically significant and WRF-CMAQ captures the observed trend in most regions. Given large number of sites for the 2000-2010 period, the model captures the observed trends in the Southwest (SW) and MW but has significantly different trend from that seen in observations for the other regions. Observational analysis reveals that it is the long-term forcing that dictates how high the ozone exceedances will be; there is a strong linear relationship between the long-term forcing and the 4th highest or the average of the top10 ozone concentrations in both observations and model output. This finding indicates that improving the model's ability to reproduce the long-term component will also enable better simulation of ozone extreme values that are of interest to regulatory agencies.

4.
Risk Anal ; 37(3): 441-458, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28418593

RESUMEN

This article compares two nonparametric tree-based models, quantile regression forests (QRF) and Bayesian additive regression trees (BART), for predicting storm outages on an electric distribution network in Connecticut, USA. We evaluated point estimates and prediction intervals of outage predictions for both models using high-resolution weather, infrastructure, and land use data for 89 storm events (including hurricanes, blizzards, and thunderstorms). We found that spatially BART predicted more accurate point estimates than QRF. However, QRF produced better prediction intervals for high spatial resolutions (2-km grid cells and towns), while BART predictions aggregated to coarser resolutions (divisions and service territory) more effectively. We also found that the predictive accuracy was dependent on the season (e.g., tree-leaf condition, storm characteristics), and that the predictions were most accurate for winter storms. Given the merits of each individual model, we suggest that BART and QRF be implemented together to show the complete picture of a storm's potential impact on the electric distribution network, which would allow for a utility to make better decisions about allocating prestorm resources.

5.
Artif Intell Earth Syst ; 2(3): 1-20, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37841557

RESUMEN

Tributary phosphorus (P) loads are one of the main drivers of eutrophication problems in freshwater lakes. Being able to predict P loads can aid in understanding subsequent load patterns and elucidate potential degraded water quality conditions in downstream surface waters. We demonstrate the development and performance of an integrated multimedia modeling system that uses machine learning (ML) to assess and predict monthly total P (TP) and dissolved reactive P (DRP) loads. Meteorological variables from the Weather Research and Forecasting (WRF) Model, hydrologic variables from the Variable Infiltration Capacity model, and agricultural management practice variables from the Environmental Policy Integrated Climate agroecosystem model are utilized to train the ML models to predict P loads. Our study presents a new modeling methodology using as testbeds the Maumee, Sandusky, Portage, and Raisin watersheds, which discharge into Lake Erie and contribute to significant P loads to the lake. Two models were built, one for TP loads using 10 environmental variables and one for DRP loads using nine environmental variables. Both models ranked streamflow as the most important predictive variable. In comparison with observations, TP and DRP loads were predicted very well temporally and spatially. Modeling results of TP loads are within the ranges of those obtained from other studies and on some occasions more accurate. Modeling results of DRP loads exceed performance measures from other studies. We explore the ability of both ML-based models to further improve as more data become available over time. This integrated multimedia approach is recommended for studying other freshwater systems and water quality variables using available decadal data from physics-based model simulations.

6.
J Air Waste Manag Assoc ; 70(11): 1136-1147, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32749924

RESUMEN

Regional air quality models are widely being used to understand the spatial extent and magnitude of the ozone non-attainment problem and to design emission control strategies needed to comply with the relevant ozone standard through direct emission perturbations. In this study, we examine the manageable portion of ground-level ozone using two simulations of the Community Multiscale Air Quality (CMAQ) model for the year 2010 and a probabilistic analysis approach involving 29 years (1990-2018) of historical ozone observations. The modeling results reveal that the reduction in the peak ozone levels from total elimination of anthropogenic emissions within the model domain is around 13-21 ppb for the 90th-100th percentile range of the daily maximum 8-hr ozone concentrations across the contiguous United States (CONUS). Large reductions in the 4th highest 8-hr ozone are seen in the regions of West (interquartile range (IQR) of 17-33%), South (IQR 22-34%), Central (IQR 19-31%), Southeast (IQR 25-34%), and Northeast (IQR 24-37%). However, sites in the western portion of the domain generally show smaller reductions even when all anthropogenic emissions are removed, possibly due to the strong influence of global background ozone, including sources such as intercontinental ozone transport, stratospheric ozone intrusions, wildfires, and biogenic precursor emissions. Probabilistic estimates of the exceedances for several hypothetical thresholds of the 4th highest 8-hr ozone indicate that, in some areas, exceedances of such hypothetical thresholds may occur even with no anthropogenic emissions due to the ever-present atmospheric stochasticity and the current global tropospheric ozone burden. Implications: Because air pollution is intricately linked to adverse health effects, National Ambient Air Quality Standards (NAAQS) have been established for criteria pollutants to safeguard human health and the environment. Areas not in compliance with the relevant standards are required to develop plans and policies to reduce their air pollution levels. Regional-scale air quality models are currently being used routinely to inform policies to identify the emissions reduction required to meet and maintain the NAAQS throughout the country. This paper examines the feasibility of the 4th highest ozone, which is used to derive the ozone design value for NAAQS, complying with various current and hypothetical 8-hr ozone thresholds over CONUS based on the information embedded in 29 years of historical ozone observations and two modeling scenarios with and without anthropogenic emissions loading.


Asunto(s)
Contaminantes Atmosféricos/análisis , Modelos Teóricos , Ozono/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente , Estados Unidos
7.
Atmos Chem Phys ; 20(22): 13801-13815, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33365052

RESUMEN

Regional-scale air quality models are being used for studying the sources, composition, transport, transformation, and deposition of fine particulate matter (PM2.5). The availability of decadal air quality simulations provides a unique opportunity to explore sophisticated model evaluation techniques rather than relying solely on traditional operational evaluations. In this study, we propose a new approach for process-based model evaluation of speciated PM2.5 using improved complete ensemble empirical mode decomposition with adaptive noise (improved CEEMDAN) to assess how well version 5.0.2 of the coupled Weather Research and Forecasting model-Community Multiscale Air Quality model (WRF-CMAQ) simulates the time-dependent long-term trend and cyclical variations in daily average PM2.5 and its species, including sulfate (SO4), nitrate (NO3), ammonium (NH4), chloride (Cl), organic carbon (OC), and elemental carbon (EC). The utility of the proposed approach for model evaluation is demonstrated using PM2.5 data at three monitoring locations. At these locations, the model is generally more capable of simulating the rate of change in the long-term trend component than its absolute magnitude. Amplitudes of the sub-seasonal and annual cycles of total PM2.5, SO4, and OC are well reproduced. However, the time-dependent phase difference in the annual cycles for total PM2.5, OC, and EC reveals a phase shift of up to half a year, indicating the need for proper temporal allocation of emissions and for updating the treatment of organic aerosols compared to the model version used for this set of simulations. Evaluation of sub-seasonal and interannual variations indicates that CMAQ is more capable of replicating the sub-seasonal cycles than interannual variations in magnitude and phase.

8.
Atmos Chem Phys ; 20(3): 1627-1639, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32117469

RESUMEN

Regional-scale air pollution models are routinely being used world-wide for research, forecasting air quality, and regulatory purposes. It is well recognized that there are both reducible (systematic) and irreducible (unsystematic) errors in the meteorology-atmospheric chemistry modeling systems. The inherent (random) uncertainty stems from our inability to properly characterize stochastic variations in atmospheric dynamics and chemistry, and from the incommensurability associated with comparisons of the volume-averaged model estimates with point measurements. Because these stochastic variations are not being explicitly simulated in the current generation of regional-scale meteorology-air quality models, one should expect to find differences between the model estimates and corresponding observations. This paper presents an observation-based methodology to determine the expected errors from current generation regional air quality models even when the model design, physics, chemistry, and numerical analysis, as well as its input data, were "perfect". To this end, the short-term synoptic-scale fluctuations embedded in the daily maximum 8-hr ozone time series are separated from the longer-term forcing using a simple recursive moving average filter. The inherent uncertainty attributable to the stochastic nature of the atmosphere is determined based on 30+ years of historical ozone time series data measured at various monitoring sites in the contiguous United States. The results reveal that the expected root mean square error at the median and 95th percentile is about 2 ppb and 5 ppb, respectively, even for "perfect" air quality models driven with "perfect" input data. Quantitative estimation of the limit to the model's accuracy will help in objectively assessing the current state-of-the-science in regional air pollution models, measuring progress in their evolution, and providing meaningful and firm targets for improvements in their accuracy relative to ambient measurements.

9.
Atmos Chem Phys ; 18(19): 13925-13945, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30800155

RESUMEN

This study evaluates simulated vertical ozone profiles produced in the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3) against ozonesonde observations in North America for the year 2010. Four research groups from the United States (US) and Europe have provided modeled ozone vertical profiles to conduct this analysis. Because some of the modeling systems differ in their meteorological drivers, wind speed and temperature are also included in the analysis. In addition to the seasonal ozone profile evaluation for 2010, we also analyze chemically inert tracers designed to track the influence of lateral boundary conditions on simulated ozone profiles within the modeling domain. Finally, cases of stratospheric ozone intrusions during May-June 2010 are investigated by analyzing ozonesonde measurements and the corresponding model simulations at Intercontinental Chemical Transport Experiment Ozonesonde Network Study (IONS) experiment sites in the western United States. The evaluation of the seasonal ozone profiles reveals that, at a majority of the stations, ozone mixing ratios are underestimated in the 1-6 km range. The seasonal change noted in the errors follows the one seen in the variance of ozone mixing ratios, with the majority of the models exhibiting less variability than the observations. The analysis of chemically inert tracers highlights the importance of lateral boundary conditions up to 250 hPa for the lower-tropospheric ozone mixing ratios (0-2 km). Finally, for the stratospheric intrusions, the models are generally able to reproduce the location and timing of most intrusions but underestimate the magnitude of the maximum mixing ratios in the 2-6 km range and overestimate ozone up to the first kilometer possibly due to marine air influences that are not accurately described by the models. The choice of meteorological driver appears to be a greater predictor of model skill in this altitude range than the choice of air quality model.

10.
J Air Waste Manag Assoc ; 55(4): 523-35, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15887895

RESUMEN

In this study, an attempt was made to analyze time series of air quality measurements (O3, SO2, SO4(2-), NOx) conducted at a remote place in the eastern Mediterranean (Finokalia at Crete Island in 1999) to obtain concrete information on potential contributions from emission sources. For the definition of a source-receptor relationship, advanced meteorological and dispersion models appropriate to identify "areas of influence" have been used. The model tools used are the Regional Atmospheric Modeling System and the Lagrangian-type particle dispersion model (forward and backward in time), with capabilities to derive influence functions and definition of "areas of influence." When high levels of pollutants have been measured at the remote location of Finokalia, particles are released from this location (receptor) and traced backward in time. The influence function derived from particle distributions characterizes dispersion conditions in the atmosphere and also provides information on potential contributions from emission sources within the modeling domain to this high concentration. As was shown in the simulation results, the experimental site of Finokalia in Crete is influenced during the selected case studies, primarily by pollutants emitted from the urban conglomerate of Athens. Secondarily, it is influenced by polluted air masses arriving from Italy and/or the Black Sea Region. For some specific cases, air pollutants monitored at Finokalia were possibly related to war activities in the West Balkan Region (Kosovo).


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Modelos Teóricos , Movimientos del Aire , Atmósfera , Control de Calidad , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA