Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Soft Matter ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38957095

RESUMEN

The addition of a surfactant and/or an increase in temperature disrupt the native structure of proteins, where high temperature further results in protein gelation. However, in a mixed protein-surfactant system, surfactant concentration and temperature have been observed to exhibit both mutually associative and counter-balancing effects towards heat-induced gelation of protein-surfactant dispersion. This study is conducted on globular bovine serum albumin (BSA) protein and cationic surfactant dodecyl trimethyl ammonium bromide (DTAB), which interact strongly owing to their oppositely charged nature. The findings reveal that the BSA-DTAB suspension undergoes gelation with increasing temperature but only at lower concentrations of DTAB, where the presence of the surfactant facilitates gelation (associative effect). Conversely, as the surfactant concentration increases beyond a critical value, temperature-driven gelation of the BSA-DTAB system is completely inhibited, despite surfactant-induced protein denaturation (counter-balancing effect). To conceptualize these results, we compared them with observations made in a system comprising protein and a similarly charged surfactant, sodium dodecyl sulfate (SDS). It has been further demonstrated that the anionic surfactant (SDS) can restrict protein gelation at much lower concentration compared to the cationic surfactant (DTAB). The evolution of the structure and interaction during gel formation/inhibition has been examined to understand the underlying mechanism guiding these sol-gel transitions. We present a comprehensive phase diagram, encompassing the solution/gel states of the protein-surfactant dispersion, with respect to the dispersion temperature, surfactant concentration, and ionic behavior (anionic or cationic) of the surfactants.

2.
Inorg Chem ; 63(16): 7255-7265, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38587285

RESUMEN

Iron oxyhydroxide, a natural nanophase of iron found in the environment, plays a crucial role in regulating surface and groundwater composition. Recent research proposes that within the nonclassical prenucleation cluster growth model, subnanometer-sized clusters (olation clusters/Fe13 δ-Keggin oxolation clusters) might act as the prenucleation clusters (PNCs) of ferrihydrite or iron oxyhydroxide solid phase. However, these clusters are difficult to characterize as they are only observable momentarily in low-pH, high-Fe concentration solutions before agglomerating into extended solids, keeping the controversy over the true nature of the PNCs alive. In this study, we introduce large quantities of zinc acetate salt (ZA) into iron chloride solutions at the olation-oxolation boundary (3.6 mM Fe3+ at pH ∼2.6). Remarkably, this manipulation is found to alter the structural arrangement of these subnanometer clusters before blocking them in isolation for hours, even at pH 6, where extended iron oxyhydroxide phases typically precipitate. On the other hand, controlled addition of ZA allows partial unblocking, leading to anisotropic agglomeration into cylindrical rod-like structures. Experimental techniques such as synchrotron-based small-angle X-ray scattering, X-ray absorption spectroscopy, high-resolution transmission electron microscopy (TEM), and cryo-TEM, along with density functional theory (DFT) calculations, reveal the nature of the structural rearrangement and the crucial role of Zn2+ ions in cluster stabilization.

3.
Phys Chem Chem Phys ; 26(7): 6372-6385, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38315058

RESUMEN

Self-assembly of ethylene oxide (EO)-propylene oxide (PO)-based star-shaped block copolymers (BCPs) in the presence of different kinds of additives is investigated in an aqueous solution environment. Commercially available four-armed BCPs, namely Tetronics® (normal: T904 with EO as the terminal end block; and reverse: T90R4 with PO as the terminal end block), each with 40%EO, are used. The effect of various additives such as electrolytes (NaCl and Na2SO4), nonelectrolyte polyols (glucose and sorbitol), and ionic surfactants (viz. anionic-sodium dodecyl sulfate (SDS), cationic-dodecyltrimethylammonium bromide (DTAB) and zwitterionic dodecyldimethylammonium propane sulfonate (C12PS)) on these BCPs is examined to observe their influence on micellization behaviour. The presence of salts and polyols displayed interesting phase behaviour, i.e., the cloud point (CP) was decreased, the water structure was affected and the micelles were dehydrated by expelling water molecules, and thus they were likely to promote micelle formation/growth. In contrast, ionic surfactants in small amounts interacted with the BCPs and showed an increase in CPs thereby forming mixed micelles with increasing charges and decreasing micellar sizes, finally transforming to small surfactant-rich mixed micelles. Molecular interactions such as electrostatic and hydrogen bonding involved within the examined entities are put forth employing a computational simulation approach using the Gaussian 09 window for calculation along with the GaussView 5.0.9 programming software using the (DFT)/B3LYP method and 3-21G basis set. The hydrodynamic diameter (Dh) of the micelles is examined using dynamic light scattering (DLS), while the various micellar parameters inferring the shape/geometry are obtained using small-angle neutron scattering (SANS) by the best fitting of the structure factors. It is observed that 10 w/v% T904 remains as spherical micelles with some micellar growth under physiological conditions (37 °C), while 10 w/v% T90R4 remains as unimers and forms spherical micelles in the presence of additives at 37 °C. Furthermore, the additive-induced micellar systems are tested as developing nanovehicles for anticancer (curcumin, Cur) drug solubilization using UV-vis spectroscopy, which shows a prominent increase in absorbance with enhanced solubilization capacity. Additionally, the cytotoxic effect of Cur loaded on the BCP micelles in HeLa cells is studied through confocal microscopy by capturing fluorescence images that depict HeLa cell growth inhibition under the influence of additive-induced micellar systems.

4.
Drug Dev Ind Pharm ; 50(1): 23-35, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38079333

RESUMEN

OBJECTIVE: This study aimed to develop a mixed polymeric micelle formulation incorporating candesartan cilexetil (CAND) drug to enhance its oral bioavailability for the better treatment of hypertension. METHODS: A Box-Behnken design was utilized to optimize the CAND-incorporated mixed polymeric micelles formulation (CAND-PFLC) consisting of Pluronics (P123 and F68) and lecithin (LC). The optimized CAND-PFLC micelles formulation was characterized for size, shape, zeta potential, polydispersity index (PDI), and entrapment efficiency (%EE). An in vitro release study, ex vivo permeability investigation, and an in vivo pharmacokinetic analysis were carried out to evaluate the performance of the formulation. RESULTS: The optimized CAND-PFLC micelles formulation demonstrated a spherical shape, a particle size of 44 ± 2.03 nm, a zeta potential of -7.07 ± 1.39 mV, a PDI of 0.326 ± 0.06, and an entrapment efficiency of 87 ± 3.12%. The formulation exhibited excellent compatibility, better stability, and a noncrystalline nature. An in vitro release study revealed a faster drug release of 7.98% at gastric pH in 2 hrs and 94.45% at intestinal pH within 24 hrs. The ex vivo investigation demonstrated a significantly enhanced permeability of CAND, with 94.86% in the micelle formulation compared to 9.03% of the pure drug. In vivo pharmacokinetic analysis showed a 4.11-fold increase in oral bioavailability of CAND compared to the marketed formulation. CONCLUSION: The CAND-PFLC mixed micelle formulation demonstrated improved performance compared to pure CAND, indicating its potential as a promising oral drug delivery system for the effective treatment of hypertension.


Asunto(s)
Bencimidazoles , Compuestos de Bifenilo , Hipertensión , Micelas , Tetrazoles , Humanos , Poloxámero/química , Lecitinas , Disponibilidad Biológica , Antihipertensivos , Administración Oral , Liberación de Fármacos , Polímeros/química , Portadores de Fármacos/química , Tamaño de la Partícula
5.
Langmuir ; 39(33): 11684-11693, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37549381

RESUMEN

Two morpholinium-based surface-active ionic liquids (SAILs) with aromatic counterions were synthesized, namely, n-dodecyl-n-methylmorpholinium salicylate [C12mmor][Sal] and n-dodecyl-n-methylmorpholinium 3-hydroxy-2-naphthoate [C12mmor][3-h-2-n], and explored their aggregation behavior in aqueous solutions systematically. Electrical conductivity, small-angle neutron scattering (SANS), surface tension (ST), and UV-vis spectroscopy measurements were employed to determine various thermodynamic, micellar, and interfacial parameters, like the degree of counterion binding (ß), critical micelle concentration (CMC), minimum area per molecule (Amin), surface excess concentration (Γmax), standard Gibbs free energy of adsorption (ΔGad0), aggregation number (Nagg), standard Gibbs free energy of micellization (ΔGm0), standard enthalpy of micelle formation (ΔHm0), and the standard entropy of micellization (ΔSm0) in an aqueous solution. Incorporating the aromatic counterions favors significantly excellent micellization properties over conventional halogenated SAILs such as [C12mmor][Br]. SANS analysis revealed that upon changing the counterion from salicylate to 3-hydroxy-2-naphthoate, the structure changed from prolate ellipsoidal micelles to large unilamellar vesicles. Also, increasing the concentration in the case of [C12mmor][Sal] resulted in a lower aggregation number.

6.
Langmuir ; 39(26): 9060-9068, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37337424

RESUMEN

We present a comprehensive investigation on the interaction of tetronics (T1304 and T1307) with some important physiological salts (NaH2PO4, KH2PO4, Na2CO3, NaCl, and KI). Thermodynamic and microstructural aspects of these interactions were studied as a function of the solution temperature, pH and salt concentration. Characterizations were performed using turbidimetric, calorimetric, and scattering techniques. We show that, at ambient temperature, T1304 molecules aggregated to form spherical core-shell aggregates displaying a unimodal distribution pattern. On the other hand, unimers and large clusters dominated in the case of highly hydrophilic T1307. Its micellization was promoted in the presence of salts as per the following trend: NaCl < KH2PO4 < NaH2PO4 ≪ Na2CO3. Aggregation was found to be endothermic, and hydrophobic interactions (TΔSmic > ΔHmic) prevailed. The enthalpy-entropy compensation plot was found to be linear for both copolymers. Demicellization occurred in the presence of KI as it facilitated the buildup of water structures around the copolymer chains. This could be verified from the increase in the cloud point, critical micelle concentration, and free energy. Overall, the temperature and salts inflicted a stronger hydrophobic effect upon T1304 in comparison to T1307.

7.
Langmuir ; 39(7): 2692-2709, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36763753

RESUMEN

Aqueous systems comprising polymers and surfactants are technologically important complex fluids with tunable features dependent on the chemical nature of each constituent, overall composition in mixed systems, and solution conditions. The phase behavior and self-assembly of amphiphilic polymers can be changed drastically in the presence of conventional ionic surfactants and need to be clearly understood. Here, the self-aggregation dynamics of a triblock copolymer (Pluronics L81, EO3PO43EO3) in the presence of three cationic surfactants (with a 12C long alkyl chain but with different structural features), viz., dodecyltrimethylammonium bromide (DTAB), didodecyldimethylammonium bromide (DDAB), and ethanediyl-1,2-bis(dimethyldodecylammonium bromide) (12-2-12), were investigated in an aqueous solution environment. The nanoscale micellar size expressed as hydrodynamic diameter (Dh) of copolymer-surfactant mixed aggregates was evaluated using dynamic light scattering, while the presence of a varied micellar geometry of L81-cationic surfactant mixed micelles were probed using small-angle neutron scattering. The obtained findings were further validated from molecular dynamics (MD) simulations, employing a simple and transferable coarse-grained molecular model based on the MARTINI force field. L81 remained molecularly dissolved up to ∼20 °C but phase separated, forming turbid/translucent dispersion, close to its cloud point (CP) and existed as unstable vesicles. However, it exhibited interesting solution behavior expressed in terms of the blue point (BP) and the double CP in the presence of different surfactants, leading to mixed micellar systems with a triggered morphology transition from unstable vesicles to polymer-rich micelles and cationic surfactant-rich micelles. Such an amendment in the morphology of copolymer nanoaggregates in the presence of cationic surfactants has been well observed from scattering data. This is further rationalized employing the MD approach, which validated the effective interactions between Pluronics-cationic surfactant mixed micelles. Thus, our experimental results integrated with MD yield a deep insight into the nanoscale interactions controlling the micellar aggregation (Pluronics-rich micelles and surfactant-rich micelles) in the investigated mixed system.

8.
Soft Matter ; 19(37): 7227-7244, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37724390

RESUMEN

The nanoscale self-assembly behavior in ethylene oxide (EO) and propylene oxide (PO)-based block copolymers (BCPs) commercially available as Pluronics®: L44 (PEO10-PPO23-PEO10) and F77 (PEO53-PPO34-PEO53) is put forth in aqueous solution and in the presence of sodium salts NaCl and Na2SO4. The moderate hydrophilicity of L44 is attributed to its low molecular weight PPO segment, while the high percentage of PEO content in F77 contributes to its extreme hydrophilicity. The impact of sodium salts (NaCl and Na2SO4) on the self-assembly is investigated to understand their influence and role in micellization, by employing various physicochemical techniques such as phase behavior conduct, calorimetry, tensiometry, scattering, and spectral analysis. The results indicate that at a low temperature range of 20-30 °C, Pluronics® solutions with a concentration of 10% w/v remain molecularly dissolved as individual units called unimers (Gaussian chain), which have a hydrodynamic size (Dh) of approximately 4-6 nm. Additionally, loose clusters of a few hundred nanometers in size are also observed. Though, at higher concentrations of BCPs and in the presence of salt or elevated temperatures, the examined micellar structures exhibit a higher degree of organization i.e., spherical or ellipsoidal in terms of size and shape. Also, the solubilization enhancement of a hydrophobic dye called orange OT within the examined micellar system is also undertaken using a spectral approach.

9.
Inorg Chem ; 62(30): 11966-11975, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37459483

RESUMEN

The simultaneous presence of Fe3+ and As3+ ions in groundwater (higher ppb or lower ppm level concentrations at circumneutral pH) as well as in acid mine drainages (AMDs)/industrial wastewater (up to few thousand ppm concentration at strongly acidic pH) are quite common. Therefore, understanding the chemical interactions prevalent between Fe3+ and As3+ ions in aqueous medium leading to nucleation of ionic clusters/solids, followed by aggregation and growth, is of great environmental significance. In the present work, we attempt to probe the nucleation process of Fe3+-As3+ clusters in solutions of various concentrations and pHs (from AMD to groundwater-like) using a combination of experimental and theoretical techniques. Interestingly, our study reveals nucleation of primary FeAs clusters in nearly all of them independent of concentration or pH. Theoretical studies employed density functional theory (DFT) to predict the primary clusters as stable Fe4As4 units. The surprising resemblance of these clusters with known Fe3+-As3+ minerals at the local level was observed experimentally, which provides an important clue about solid-phase growth from a range of Fe3+-As3+ solutions. Our experimental findings are further supported by a stepwise reaction mechanism established from detailed DFT studies.

10.
Phys Chem Chem Phys ; 25(33): 22130-22144, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37563993

RESUMEN

Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) experiments have been carried out to study the competitive effects of NaCl and sodium dodecyl sulfate (SDS) surfactant on the evolution of the structure and interactions in a silica nanoparticle-Bovine serum albumin (BSA) protein system. The unique advantage of contrast-matching SANS has been utilized to particularly probe the structure of nanoparticles in the multi-component system. Silica nanoparticles and BSA protein both being anionic remain largely individual in the solution without significant adsorption. The non-adsorbing nature of protein is known to cause depletion attraction between nanoparticles at higher protein concentrations. The nanoparticles undergo immediate aggregation in the nanoparticle-BSA system on the addition of a small amount of salt [referred as the critical salt concentration (CSC)], much less than that required to induce aggregation in a pure nanoparticle dispersion. The salt ions screen the electrostatic repulsion between the nanoparticles, whereby the BSA-induced depletion attraction dominates the system and contributes to the nanoparticle aggregation of a mass fractal kind of morphology. Further, the addition of SDS in this system interestingly suppresses nanoparticle aggregation for salt concentrations lower than the CSC. The presence of SDS gives rise to additional electrostatic repulsion in the system by binding with the BSA protein via electrostatic and hydrophobic interactions. For salt concentrations higher than the CSC, the formation of clusters of nanoparticles is inevitable even in the presence of protein-surfactant complexes, but the mass fractal kind of branched aggregates transform to surface fractals. This has been attributed to the BSA-SDS complex induced depletion attraction along with salt-driven screening of electrostatic repulsion. Thus, the interplay of depletion and electrostatic and hydrophobic interactions has been utilized to tune the structures formed in a multicomponent silica nanoparticle-BSA-SDS/NaCl system.


Asunto(s)
Nanopartículas , Surfactantes Pulmonares , Tensoactivos/química , Cloruro de Sodio , Nanopartículas/química , Albúmina Sérica Bovina/química , Lipoproteínas , Dióxido de Silicio/química
11.
AAPS PharmSciTech ; 24(4): 95, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012522

RESUMEN

Liposomes composed of soy lecithin (SL) have been studied widely for drug delivery applications. The stability and elasticity of liposomal vesicles are improved by incorporating additives, including edge activators. In this study, we report the effect of sodium taurodeoxycholate (STDC, a bile salt) upon the microstructural characteristics of SL vesicles. Liposomes, prepared by the thin film hydration method, were characterized by dynamic light scattering (DLS), small-angle neutron scattering (SANS), electron microscopy, and rheological techniques. We noticed a reduction in the size of vesicles with the incremental addition of STDC. Initial changes in the size of spherical vesicles were ascribed to the edge-activating action of STDC (0.05 to 0.17 µM). At higher concentrations (0.23 to 0.27 µM), these vesicles transformed into cylindrical structures. Morphological transitions at higher STDC concentrations would have occurred due to its hydrophobic interaction with SL molecules in the bilayer. This was ascertained from nuclear magnetic resonance observations. Whereas shape transitions underscored the deformability of vesicles in the presence of STDC, the consistency of bilayer thickness ruled out any dissociative effect. It was interesting to notice that SL-STDC mixed structures could survive high thermal stress, electrolyte addition, and dilution.


Asunto(s)
Liposomas , Ácido Taurodesoxicólico , Liposomas/química , Sistemas de Liberación de Medicamentos , Micelas , Dispersión del Ángulo Pequeño , Polímeros
12.
Langmuir ; 38(48): 14745-14759, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36394314

RESUMEN

Two tripodal amides obtained from nitrilotriacetic acid with n-butyl and n-octyl alkyl chains (HBNTA(LI) and HONTA(LII), respectively) were studied for the extraction of Th(IV) ions from nitric acid medium. The effect of the diluent medium, i.e., n-dodecane alone and a mixture of n-dodecane and 1-decanol, onto aggregate formation were investigated using small angle neutron scattering (SANS) studies. In addition, the influence of the ligand structure, nitric acid, and Th(IV) loading onto ligand aggregation and third-phase formation tendency was discussed.The LI/LII exist as monomers (aggregarte radius for LI: 6.0 Å; LII:7.4 Å) in the presence of 1-decanol, whereas LII forms dimers (aggregarte radius for LII:9.3 Å; LI does not dissolve in n-dodecane) in the absence of 1-decanol. The aggregation number increases for both the ligands after HNO3 and Th(IV) loading. The maximum organic concentration (0.050 ± 0.004 M) of Th(IV) was reached without third-phase formation for 0.1 M LI/LII dissolved in 20% isodecanol +80% n-dodecane. The interaction of 1-decanol with LII and HNO3/Th(IV) with amidic oxygens of LI/LII results in shift of carbonyl stretching frequency, as shown by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) studies. The structural and bonding information of the Th-LI/LII complex were derived from the density functional theoretical (DFT) studies. The molecular dynamics (MD) simulations suggested that the aggregation behavior of the ligand in the present system is governed by the population of hydrogen bonds by phase modifier around the ligand molecules. Although the theoretical studies suggested higher Gibbs free energy of complexation for Th4+ ions with LI than LII, the extraction was found to be higher with the latter, possibly due to the higher lipophilicity and solubility of the Th-LII aggregate in the nonpolar media.

13.
Soft Matter ; 18(24): 4543-4553, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35674288

RESUMEN

This study scrutinizes the self-association of ethylene oxide (EO)-propylene oxide (PO)-based star-shaped block copolymers as normal Tetronic® (T904) and reverse Tetronic® R (T90R4) with varying molecular characteristics and different hydrophilic-hydrophobic ratios in an aqueous solution environment. These thermo-responsive solutions appear clear, transparent or bluish up to 10%w/v, which anticipated the probable transition of unimers to spherical or ellipsoidal micelles which is complemented by scattering experiments. In a single-solution environment, 10%w/v T904 formed star-shaped micelles at ambient temperature and exhibited a micellar growth/transition with temperature ageing. While 10%w/v T90R4 exists as unimers or a Gaussian coil over a wide range of temperature. Very interestingly, close to the cloud point (CP) flower-shaped spherical and ellipsoidal micelles were formed. A similar proposed micellar scheme was also examined for mixed systems T904 : T90R4 in varying ratios (1 : 0, 3 : 1, 1 : 1, 1 : 3 and 0 : 1) giving an account to the solution behavior of the mixtures. An amalgamation of dynamic light scattering (DLS) and small-angle neutron scattering (SANS) techniques achieved the thorough extraction of the structural parameters of the micellar system. The hydrodynamic diameter (Dh) of the micelles with temperature variation was evaluated from dynamic light scattering (DLS) while the structure factor of the micelles was found by employing small-angle neutron scattering (SANS). Furthermore, the single and mixed micellar systems were quantitatively and qualitatively examined for anticancer drug solubilization using UV-vis spectroscopy for their superior use as potential nanocargos.


Asunto(s)
Micelas , Agua , Dispersión Dinámica de Luz , Interacciones Hidrofóbicas e Hidrofílicas , Dispersión del Ángulo Pequeño , Agua/química
14.
Soft Matter ; 18(2): 434-445, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34908081

RESUMEN

The structures of the complexes of anionic silica nanoparticle (size ∼ 16 nm)-lysozyme (cationic) protein, tuned by the addition of the anionic surfactant sodium dodecyl sulfate (SDS), have been investigated by dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The unique advantage of contrast variation SANS has been used to probe the role of individual components in binary and ternary systems. The cationic lysozyme protein (at pH ∼ 7) adsorbs on the anionic silica nanoparticles and forms mass fractal aggregates due to the strong attractive interaction, whereas similarly charged SDS does not interact physically with silica nanoparticles. The presence of SDS, however, remarkably affects the nanoparticle-protein interactions via binding with the oppositely charged segments of lysozyme. In general, the SDS-lysozyme complexes possess a variety of structures (e.g., insoluble complexes of Ly(DS)8, crystalline structure, or micelle-like structure) depending on the surfactant-to-protein molar ratio (S/P). In the ternary system (HS40-lysozyme-SDS), lysozyme preferentially binds with SDS, instead of directly to nanoparticles. At low S/Ps (0 ≤ S/P ≤ 10), the SDS concentration is not enough to fully neutralize the charge of lysozyme, leading to the formation of cationic SDS-lysozyme complex-mediated nanoparticle aggregation. The morphology of the nanoparticle-(lysozyme-SDS) complexes is also found to be mass fractal kind where the fractal dimension increases with increasing SDS concentration. At S/P > 10, there is sufficient SDS to fully neutralize the lysozyme in the absence of competing charges from the particle but it is at S/P = 50 before all lysozyme desorbs from the particle and binds completely to the overwhelming amount of SDS, creating an oppositely charged lysozyme-SDS complex, which is repelled from the particle.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Muramidasa , Dodecil Sulfato de Sodio , Tensoactivos
15.
Phys Chem Chem Phys ; 24(37): 22691-22698, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36106571

RESUMEN

Plant cell walls undergo multiple cycles of dehydration and rehydration during their life. Calcium crosslinked low methoxy pectin is a major constituent of plant cell walls. Understanding the dehydration-rehydration behavior of pectin gels may shed light on the water transport and mechanics of plant cells. In this work, we report the contributions of the microstructure to the mechanics of pectin-Ca gels subjected to different extents of dehydration and subsequent rehydration. This is investigated using a pectin gel composition that forms 'egg-box bundles', a characteristic feature of the microstructure of low methoxy pectin-Ca gels. Large amplitude oscillatory shear (LAOS) rheology along with small angle neutron scattering and near infrared (NIR) spectroscopy on pectin gels is used to elucidate the mechanical and microstructural changes during dehydration-rehydration cycles. As the extent of dehydration increases, the reswelling ability, strain-stiffening behavior and yield strain decrease. These effects are more prominent at faster rates of dehydration and are not completely reversible upon rehydration to the initial undried state. Microstructural changes due to the aggregation of egg-box bundles and single chains and the associated changes in the water configurations lead to these irreversible changes.


Asunto(s)
Pectinas , Agua , Calcio/química , Pared Celular/química , Deshidratación , Geles/química , Humanos , Pectinas/análisis , Pectinas/química , Células Vegetales , Reología , Agua/análisis
16.
Phys Chem Chem Phys ; 24(36): 21740-21749, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36093641

RESUMEN

Polymer-mediated interactions play an important role in the stability of colloids and are therefore paramount for both fundamental as well as scientific interests. The stability of colloids in the presence of neutral polymers depends on several parameters such as the adsorbing/non-adsorbing nature, molecular weight, concentration and temperature, and such systems are well studied. However, the stability behaviour of charged colloids in the presence of charged polyelectrolyte involves complex interaction mechanisms and hence needs attention. The present work reports the study of the stability behaviour of negatively charged silica colloids in the presence of cationic polyethylenimine (PEI) polyelectrolyte using small-angle neutron and X-ray scattering. The intriguing non-monotonic stability behaviour of silica colloids is observed with varying concentrations of PEI. In the low and intermediate PEI concentration regimes, electrosorption of PEI on the silica colloids causes partial screening of charges, leading to aggregation of colloids. The DLVO interaction potential at low and intermediate concentrations of PEI exhibit a reduced repulsion barrier which is responsible for aggregation. In the high concentration regime, the entropic interaction between the free PEI molecules and PEI decorated silica colloids leads to depletion re-stabilization. The combination of DLVO potential and adsorbed PEI mediated enhanced depletion repulsion in the presence of free PEI gives rise to an increased repulsion barrier responsible for the re-stabilization at high PEI concentrations.

17.
Phys Chem Chem Phys ; 24(35): 21141-21156, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36039741

RESUMEN

Poly(ethylene oxide, EO)-poly(propylene oxide, PO)-poly(ethylene oxide, EO)-based triblock copolymers (BCPs) with 80% hydrophilicity stay molecularly dissolved as Gaussian chains at ambient temperature, even at fairly high concentrations (>5 %w/v). This study presents the plausible micellization behaviour of such very-hydrophilic Pluronics® - F38, F68, F88, F98, and F108 - incited upon the addition of glucose at low concentrations and temperatures. The outcomes obtained from phase behaviour and scattering studies are described. At temperatures near to ambient temperature, these BCPs form micelles with a central core made of a PO block, surrounded by a corona of highly hydrated EO chains. The phase transitions in these hydrophilic Pluronics® in the presence of glucose are demonstrated via the dehydration of the copolymer coil, leading to a decrease in the I1/I3 ratio, as determined using fluorescence spectroscopy. The temperature-dependent cloud point (CP) showed a marked decrease with an increase in the PO molecular weight and also in the presence of glucose. The change in solution relative viscosity (ηrel) caused by glucose is due to the enhanced dehydration of the EO block of the BCP amphiphile. Dynamic light scattering (DLS) and small-angle neutron scattering (SANS) investigations suggested that the dimensions of the hydrophobic core increase during the dehydration of the EO-PO blocks upon a temperature increase or after adding varying concentrations of glucose, thereby resulting in a micellar shape transition. It has been observed that added glucose influences the phase behaviour of BCPs in an analogous way to the influence of temperature. Also, plausible interactions between the EO-PO blocks and glucose were suggested based on the evaluated optimized descriptors obtained from a computational simulation approach. In addition, the core-shell blended micelles obtained using these BCPs are successfully utilized for drug (curcumin, Cur) solubilization based on the observed peak intensities from UV-visible spectroscopy. The loading of Cur into glucose-containing and glucose-free hydrophilic Pluronic® micelles shows how the radius of the micellar core (Rc) increases in the presence of glucose, thereby indicating Cur solubility enhancement for the Pluronic® micelles. Various kinetics models were employed, demonstrating a drug release profile that enables this approach to be used as an ideal platform for drug delivery.


Asunto(s)
Micelas , Poloxámero , Deshidratación , Óxido de Etileno , Glucosa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Poloxámero/química , Polietilenglicoles/química , Polietilenos , Polipropilenos , Agua/química
18.
J Biol Phys ; 48(2): 237-251, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35416637

RESUMEN

Protein-protein interaction in solution strongly depends on dissolved ions and solution pH. Interaction among globular protein (bovine serum albumin, BSA), above and below of its isoelectric point (pI ≈ 4.8), is studied in the presence of anions (Cl-, Br-, I-, F-, SO42-) using small-angle neutron scattering (SANS) technique. The SANS study reveals that the short-range attraction among BSA molecules remains nearly unchanged in the presence of anions, whereas the intermediate-range repulsive interaction increases following the Hofmeister series of anions. Although the interaction strength modifies below and above the pI of BSA, it nearly follows the series.


Asunto(s)
Albúmina Sérica Bovina , Aniones , Dispersión del Ángulo Pequeño , Albúmina Sérica Bovina/química
19.
Langmuir ; 37(2): 867-873, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33400877

RESUMEN

Graphene oxide (GO) nanosheet suspension is not stable in physiological ionic fluids. To improve stability, surfactants such as Pluronic 103 (P103) have been tested. Going further, this work investigated whether conferring positive surface charge to the surfactant may improve the adsorption ability of P103 micelles on GO sheets. Positive charge on the surfactant was induced by adding dodecyltrimethylammonium bromide (DTAB, a cationic surfactant) in P103 micelles. Subsequent changes in aggregation parameters were investigated through dynamic light scattering and small-angle neutron scattering studies. DTAB incorporation was accompanied by a steady increase in the ζ potential and mixed micelle formation. At high surface charge density, the interaction between adjacent head groups was distorted, which led to dissociation of mixed micelles. Structural developments during the adsorption of mixed micelles on the sheet surface (mass fractal formation) were monitored in terms of changes in the scattering features of aggregates. These fractals emerged as a result of electrostatic interactions. Our observations point toward the existence of small-sized building blocks at low DTAB concentration (≤4 mM). With a superior adsorption, mixed micelles are expected to occupy the intersheet space and maintain a hydration layer. However, at a higher DTAB concentration (≥10 mM), micelles dissociate to produce DTAB-rich unimers and P103-rich loose aggregates. At this point, sheets tend to aggregate in the solvent, regardless of fractal formation.

20.
Soft Matter ; 17(29): 6972-6984, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34236073

RESUMEN

The interaction of a bovine serum albumin (BSA) protein with the mixture of anionic sodium dodecyl sulfate (SDS) and cationic dodecyltrimethylammonium bromide (DTAB) has been investigated by small-angle neutron scattering (SANS) and dynamic light scattering (DLS). Both SDS and DTAB as individuals interact electrostatically as well as hydrophobically with BSA and form connected protein-decorated micelle like complexes in the aqueous solution, in which the well-defined surfactant micelles are organized along the randomly distributed unfolded polypeptide chain of the protein. The protein-surfactant interaction has been tuned by adding different molar mixtures of SDS and DTAB in BSA aqueous solution. It is found that a lower molar fraction of either surfactant in the protein-mixed surfactant complexes results in the formation of a connected protein-decorated micelle structure similar to those of pure surfactants. As the molar fraction of one of the surfactants in the mixture approaches the equimolar fraction, the structure formed by the protein-mixed surfactant is very different from the connected protein-decorated micelle like structure. Different microstructures of BSA-mixed surfactant complexes are formed, mostly governed by the structure of mixed surfactants arising from the strong electrostatic interaction of oppositely charged components. In this case, unfolded proteins wrap the structures of mixed surfactants around their surface. Along with the connected protein-decorated micelle like structure, rod-like and bilayer vesicles of protein-surfactant complexes are formed at different molar fractions of mixed surfactants.


Asunto(s)
Albúmina Sérica Bovina , Tensoactivos , Animales , Aniones , Cationes , Bovinos , Humanos , Dodecil Sulfato de Sodio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA