Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 16(12): 1215-27, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26479788

RESUMEN

Enhancing the response to interferon could offer an immunological advantage to the host. In support of this concept, we used a modified form of the transcription factor STAT1 to achieve hyper-responsiveness to interferon without toxicity and markedly improve antiviral function in transgenic mice and transduced human cells. We found that the improvement depended on expression of a PARP9-DTX3L complex with distinct domains for interaction with STAT1 and for activity as an E3 ubiquitin ligase that acted on host histone H2BJ to promote interferon-stimulated gene expression and on viral 3C proteases to degrade these proteases via the immunoproteasome. Thus, PARP9-DTX3L acted on host and pathogen to achieve a double layer of immunity within a safe reserve in the interferon signaling pathway.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Histonas/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Virales/metabolismo , Proteasas Virales 3C , Animales , Línea Celular , Núcleo Celular/metabolismo , Virus de la Encefalomiocarditis/fisiología , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Immunoblotting , Interferón beta/farmacología , Interferón gamma/farmacología , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Mutación , Poli(ADP-Ribosa) Polimerasas/genética , Unión Proteica , Interferencia de ARN , ADN Polimerasa Dirigida por ARN , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Transducción de Señal , Transcriptoma/efectos de los fármacos , Ubiquitina-Proteína Ligasas/genética
2.
Blood ; 139(19): 2855-2870, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35357446

RESUMEN

The leukocyte NADPH oxidase 2 (NOX2) plays a key role in pathogen killing and immunoregulation. Genetic defects in NOX2 result in chronic granulomatous disease (CGD), associated with microbial infections and inflammatory disorders, often involving the lung. Alveolar macrophages (AMs) are the predominant immune cell in the airways at steady state, and limiting their activation is important, given the constant exposure to inhaled materials, yet the importance of NOX2 in this process is not well understood. In this study, we showed a previously undescribed role for NOX2 in maintaining lung homeostasis by suppressing AM activation, in CGD mice or mice with selective loss of NOX2 preferentially in macrophages. AMs lacking NOX2 had increased cytokine responses to Toll-like receptor-2 (TLR2) and TLR4 stimulation ex vivo. Moreover, between 4 and 12 week of age, mice with global NOX2 deletion developed an activated CD11bhigh subset of AMs with epigenetic and transcriptional profiles reflecting immune activation compared with WT AMs. The presence of CD11bhigh AMs in CGD mice correlated with an increased number of alveolar neutrophils and proinflammatory cytokines at steady state and increased lung inflammation after insults. Moreover, deletion of NOX2 preferentially in macrophages was sufficient for mice to develop an activated CD11bhigh AM subset and accompanying proinflammatory sequelae. In addition, we showed that the altered resident macrophage transcriptional profile in the absence of NOX2 is tissue specific, as those changes were not seen in resident peritoneal macrophages. Thus, these data demonstrate that the absence of NOX2 in alveolar macrophages leads to their proinflammatory remodeling and dysregulates alveolar homeostasis.


Asunto(s)
Enfermedad Granulomatosa Crónica , Pulmón , Macrófagos Alveolares , NADPH Oxidasa 2 , Animales , Citocinas , Enfermedad Granulomatosa Crónica/genética , Homeostasis , Pulmón/fisiología , Ratones , Ratones Endogámicos C57BL , NADPH Oxidasa 2/genética
3.
Nephrol Dial Transplant ; 38(5): 1139-1150, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36269313

RESUMEN

BACKGROUND: Inflammation is a key driver of the transition of acute kidney injury to progressive fibrosis and chronic kidney disease (AKI-to-CKD transition). Blocking a-disintegrin-and-metalloprotease-17 (ADAM17)-dependent ectodomain shedding, in particular of epidermal growth factor receptor (EGFR) ligands and of the type 1 inflammatory cytokine tumor necrosis factor (TNF), reduces pro-inflammatory and pro-fibrotic responses after ischemic AKI or unilateral ureteral obstruction (UUO), a classical fibrosis model. Metalloprotease or EGFR inhibition show significant undesirable side effects in humans. In retrospective studies anti-TNF biologics reduce the incidence and progression of CKD in humans. Whether TNF has a role in AKI-to-CKD transition and how TNF inhibition compares to EGFR inhibition is largely unknown. METHODS: Mice were subjected to bilateral renal ischemia-reperfusion injury or unilateral ureteral obstruction. Kidneys were analyzed by histology, immunohistochemistry, qPCR, western blot, mass cytometry, scRNA sequencing, and cytokine profiling. RESULTS: Here we show that TNF or EGFR inhibition reduce AKI-to-CKD transition and fibrosis equally by about 25%, while combination has no additional effect. EGFR inhibition reduced kidney TNF expression by about 50% largely by reducing accumulation of TNF expressing immune cells in the kidney early after AKI, while TNF inhibition did not affect EGFR activation or immune cell accumulation. Using scRNAseq data we show that TNF is predominantly expressed by immune cells in AKI but not in proximal tubule cells (PTC), and PTC-TNF knockout did not affect AKI-to-CKD transition in UUO. Thus, the anti-inflammatory and anti-fibrotic effects of the anti-TNF biologic etanercept in AKI-to-CKD transition rely on blocking TNF that is released from immune cells recruited or accumulating in response to PTC-EGFR signals. CONCLUSION: Short-term anti-TNF biologics during or after AKI could be helpful in the prevention of AKI-to-CKD transition.


Asunto(s)
Lesión Renal Aguda , Productos Biológicos , Insuficiencia Renal Crónica , Obstrucción Ureteral , Humanos , Ratones , Animales , Etanercept/farmacología , Etanercept/uso terapéutico , Etanercept/metabolismo , Obstrucción Ureteral/metabolismo , Estudios Retrospectivos , Inhibidores del Factor de Necrosis Tumoral/metabolismo , Inhibidores del Factor de Necrosis Tumoral/farmacología , Insuficiencia Renal Crónica/patología , Riñón/patología , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/etiología , Lesión Renal Aguda/prevención & control , Receptores ErbB , Factor de Necrosis Tumoral alfa/metabolismo , Fibrosis , Productos Biológicos/metabolismo , Productos Biológicos/farmacología
4.
Am J Respir Crit Care Med ; 203(1): 78-89, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32673071

RESUMEN

Rationale: Idiopathic pulmonary fibrosis (IPF) is a progressive inflammatory lung disease without effective molecular markers of disease activity or treatment responses. Monocyte and interstitial macrophages that express the C-C motif CCR2 (chemokine receptor 2) are active in IPF and central to fibrosis.Objectives: To phenotype patients with IPF for potential targeted therapy, we developed 64Cu-DOTA-ECL1i, a radiotracer to noninvasively track CCR2+ monocytes and macrophages using positron emission tomography (PET).Methods: CCR2+ cells were investigated in mice with bleomycin- or radiation-induced fibrosis and in human subjects with IPF. The CCR2+ cell populations were localized relative to fibrotic regions in lung tissue and characterized using immunolocalization, single-cell mass cytometry, and Ccr2 RNA in situ hybridization and then correlated with parallel quantitation of lung uptake by 64Cu-DOTA-ECL1i PET.Measurements and Main Results: Mouse models established that increased 64Cu-DOTA-ECL1i PET uptake in the lung correlates with CCR2+ cell infiltration associated with fibrosis (n = 72). As therapeutic models, the inhibition of fibrosis by IL-1ß blockade (n = 19) or antifibrotic pirfenidone (n = 18) reduced CCR2+ macrophage accumulation and uptake of the radiotracer in mouse lungs. In lung tissues from patients with IPF, CCR2+ cells concentrated in perifibrotic regions and correlated with radiotracer localization (n = 21). Human imaging revealed little lung uptake in healthy volunteers (n = 7), whereas subjects with IPF (n = 4) exhibited intensive signals in fibrotic zones.Conclusions: These findings support a role for imaging CCR2+ cells within the fibrogenic niche in IPF to provide a molecular target for personalized therapy and monitoring.Clinical trial registered with www.clinicaltrials.gov (NCT03492762).


Asunto(s)
Biomarcadores/química , Fibrosis Pulmonar Idiopática/fisiopatología , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Macrófagos/fisiología , Monocitos/fisiología , Receptores CCR2/química , Adulto , Anciano , Anciano de 80 o más Años , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Imagen Molecular , Tomografía de Emisión de Positrones
5.
Am J Respir Cell Mol Biol ; 63(6): 739-747, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32804550

RESUMEN

Single-cell RNA sequencing (scRNASeq) has advanced our understanding of lung biology, but its utility is limited by the need for fresh samples, loss of cell types by death or inadequate dissociation, and transcriptional stress responses induced during tissue digestion. Single-nucleus RNA sequencing (snRNASeq) has addressed these deficiencies in other tissues, but no protocol exists for lung tissue. We present a snRNASeq protocol and compare its results with those of scRNASeq. Two nuclear suspensions were prepared in lysis buffer on ice while one cell suspension was generated using enzymatic and mechanical dissociation. Cells and nuclei were processed using the 10× Genomics platform, and sequencing data were analyzed by Seurat. A total of 16,110 single-nucleus and 11,934 single-cell transcriptomes were generated. Gene detection rates were equivalent in snRNASeq and scRNASeq (∼1,700 genes and 3,000 unique molecular identifiers per cell) when mapping intronic and exonic reads. In the combined data, 89% of epithelial cells were identified by snRNASeq versus 22.2% of immune cells. snRNASeq transcriptomes are enriched for transcription factors and signaling proteins, with reduction in mitochondrial and stress-response genes. Both techniques improved mesenchymal cell detection over previous studies. Homeostatic signaling relationships among alveolar cell types were defined by receptor-ligand mapping using snRNASeq data, revealing interplay among epithelial, mesenchymal, and capillary endothelial cells. snRNASeq can be applied to archival murine lung samples, improves dissociation bias, eliminates artifactual gene expression, and provides similar gene detection compared with scRNASeq.


Asunto(s)
Trastornos Disociativos/genética , Células Endoteliales/metabolismo , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN , Animales , Núcleo Celular/metabolismo , Trastornos Disociativos/metabolismo , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica/métodos , Pulmón/metabolismo , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN/métodos
6.
Radiology ; 283(3): 758-768, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28045644

RESUMEN

Purpose To characterize a chemokine receptor type 2 (CCR2)-binding peptide adapted for use as a positron emission tomography (PET) radiotracer for noninvasive detection of lung inflammation in a mouse model of lung injury and in human tissues from subjects with lung disease. Materials and Methods The study was approved by institutional animal and human studies committees. Informed consent was obtained from patients. A 7-amino acid CCR2 binding peptide (extracellular loop 1 inverso [ECL1i]) was conjugated to tetraazacyclododecane tetraacetic acid (DOTA) and labeled with copper 64 (64Cu) or fluorescent dye. Lung inflammation was induced with intratracheal administration of lipopolysaccharide (LPS) in wild-type (n = 19) and CCR2-deficient (n = 4) mice, and these mice were compared with wild-type mice given control saline (n = 5) by using PET performed after intravenous injection of 64Cu-DOTA-ECL1i. Lung immune cells and those binding fluorescently labeled ECL1i in vivo were detected with flow cytometry. Lung inflammation in tissue from subjects with nondiseased lungs donated for lung transplantation (n = 11) and those with chronic obstructive pulmonary disease (COPD) who were undergoing lung transplantation (n = 16) was evaluated for CCR2 with immunostaining and autoradiography (n = 6, COPD) with 64Cu-DOTA-ECL1i. Groups were compared with analysis of variance, the Mann-Whitney U test, or the t test. Results Signal on PET images obtained in mouse lungs after injury with LPS was significantly greater than that in the saline control group (mean = 4.43% of injected dose [ID] per gram of tissue vs 0.99% of injected dose per gram of tissue; P < .001). PET signal was significantly diminished with blocking studies using nonradiolabeled ECL1i in excess (mean = 0.63% ID per gram of tissue; P < .001) and in CCR2-deficient mice (mean = 0.39% ID per gram of tissue; P < .001). The ECL1i signal was associated with an elevated level of mouse lung monocytes. COPD lung tissue displayed significantly elevated CCR2 levels compared with nondiseased tissue (median = 12.8% vs 1.2% cells per sample; P = .002), which was detected with 64Cu-DOTA-ECL1i by using autoradiography. Conclusion 64Cu-DOTA-ECL1i is a promising tool for PET-based detection of CCR2-directed inflammation in an animal model and in human tissues as a step toward clinical translation. © RSNA, 2017 Online supplemental material is available for this article.


Asunto(s)
Neumonía/diagnóstico por imagen , Neumonía/inmunología , Tomografía de Emisión de Positrones , Receptores CCR2/análisis , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Tomografía de Emisión de Positrones/métodos
7.
J Biol Chem ; 288(40): 28869-80, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-23963447

RESUMEN

Microfibril-associated glycoprotein (MAGP) 1 and 2 are evolutionarily related but structurally divergent proteins that are components of microfibrils of the extracellular matrix. Using mice with a targeted inactivation of Mfap5, the gene for MAGP2 protein, we demonstrate that MAGPs have shared as well as unique functions in vivo. Mfap5(-/-) mice appear grossly normal, are fertile, and have no reduction in life span. Cardiopulmonary development is typical. The animals are normotensive and have vascular compliance comparable with age-matched wild-type mice, which is indicative of normal, functional elastic fibers. Loss of MAGP2 alone does not significantly alter bone mass or architecture, and loss of MAGP2 in tandem with loss of MAGP1 does not exacerbate MAGP1-dependent osteopenia. MAGP2-deficient mice are neutropenic, which contrasts with monocytopenia described in MAGP1-deficient animals. This suggests that MAGP1 and MAGP2 have discrete functions in hematopoiesis. In the cardiovascular system, MAGP1;MAGP2 double knockout mice (Mfap2(-/-);Mfap5(-/-)) show age-dependent aortic dilation. These findings indicate that MAGPs have shared primary functions in maintaining large vessel integrity. In solid phase binding assays, MAGP2 binds active TGFß1, TGFß2, and BMP2. Together, these data demonstrate that loss of MAGP2 expression in vivo has pleiotropic effects potentially related to the ability of MAGP2 to regulate growth factors or participate in cell signaling.


Asunto(s)
Proteínas Contráctiles/deficiencia , Proteínas Contráctiles/metabolismo , Proteínas de la Matriz Extracelular/deficiencia , Proteínas de la Matriz Extracelular/metabolismo , Pleiotropía Genética , Alelos , Empalme Alternativo/genética , Secuencia de Aminoácidos , Animales , Densidad Ósea , Proteínas Morfogenéticas Óseas/metabolismo , Huesos/patología , Huesos/fisiopatología , Movimiento Celular , Proteínas Contráctiles/química , Exones/genética , Proteínas de la Matriz Extracelular/química , Marcación de Gen , Recuento de Leucocitos , Masculino , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Neutropenia/metabolismo , Neutropenia/patología , Neutrófilos/metabolismo , Neutrófilos/patología , Tamaño de los Órganos , Unión Proteica , Factores de Empalme de ARN , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética , Factor de Crecimiento Transformador beta/metabolismo
8.
Am J Physiol Lung Cell Mol Physiol ; 306(11): L1006-15, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24705725

RESUMEN

Matrix metalloproteinase-9 (MMP-9) is a matrix-degrading enzyme implicated in many biological processes, including inflammation. It is produced by many cells, including fibroblasts. When cultured in three-dimensional (3D) collagen gels, fibroblasts contract the surrounding matrix, a function that is thought to model the contraction that characterizes both normal wound repair and fibrosis. The current study was designed to evaluate the role of endogenously produced MMP-9 in fibroblast contraction of 3D collagen gels. Fibroblasts from mice lacking expression of MMP-9 and human lung fibroblasts (HFL-1) transfected with MMP-9 small-interfering RNA (siRNA) were used. Fibroblasts were cast into type I collagen gels and floated in culture medium with or without transforming growth factor (TGF)-ß1 for 5 days. Gel size was determined daily using an image analysis system. Gels made from MMP-9 siRNA-treated human fibroblasts contracted less than control fibroblasts, as did fibroblasts incubated with a nonspecific MMP inhibitor. Similarly, fibroblasts cultured from MMP-9-deficient mice contracted gels less than did fibroblasts from control mice. Transfection of the MMP-9-deficient murine fibroblasts with a vector expressing murine MMP-9 restored contractile activity to MMP-9-deficient fibroblasts. Inhibition of MMP-9 reduced active TGF-ß1 and reduced several TGF-ß1-driven responses, including activity of a Smad3 reporter gene and production of fibronectin. Because TGF-ß1 also drives fibroblast gel contraction, this suggests the mechanism for MMP-9 regulation of contraction is through the generation of active TGF-ß1. This study provides direct evidence that endogenously produced MMP-9 has a role in regulation of tissue contraction of 3D collagen gels mediated by fibroblasts.


Asunto(s)
Colágeno/metabolismo , Fibroblastos/enzimología , Metaloproteinasa 9 de la Matriz/fisiología , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Células Cultivadas , Dipéptidos/farmacología , Geles , Humanos , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Ratas , Transducción de Señal , Proteína smad3/metabolismo
9.
Magn Reson Med ; 71(1): 339-44, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24155277

RESUMEN

PURPOSE: To present in vivo, human validation of a previously proposed method to measure key pulmonary parameters related to lung microstructure and physiology. Some parameters, such as blood-air barrier thickness, cannot be measured readily by any other noninvasive modality. METHODS: Healthy volunteers (n = 12) were studied in 1.5T and 3T whole body human scanners using hyperpolarized xenon. Xenon uptake by lung parenchyma and blood was measured using a chemical shift saturation recovery sequence. Both dissolved-xenon peaks at 197 ppm and 217-218 ppm were fitted against a model of xenon exchange (MOXE) as functions of exchange time. Parameters related to lung function and structure can be obtained by fitting to this model. RESULTS: The following results were obtained from xenon uptake (averaged over all healthy volunteers): surface-area-to-volume ratio = 210 ± 50 cm(-1) ; total septal wall thickness = 9.2 ± 6.5 µm; blood-air barrier thickness = 1.0 ± 0.3 µm; hematocrit = 27 ± 4%; pulmonary capillary blood transit time = 1.3 ± 0.3 s, in good agreement with literature values from invasive experiments. More detailed fitting results are listed in the text. CONCLUSION: The initial in vivo human results demonstrate that our proposed methods can be used to noninvasively determine lung physiology by simultaneous quantification of a few important pulmonary parameters. This method is highly promising to become a versatile screening method for lung diseases.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Pulmón/anatomía & histología , Pulmón/fisiología , Intercambio Gaseoso Pulmonar/fisiología , Volumen de Ventilación Pulmonar/fisiología , Isótopos de Xenón , Administración por Inhalación , Adulto , Anciano , Medios de Contraste/administración & dosificación , Femenino , Humanos , Pulmón/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Cintigrafía , Radiofármacos/administración & dosificación , Valores de Referencia , Reproducibilidad de los Resultados , Pruebas de Función Respiratoria/métodos , Sensibilidad y Especificidad , Isótopos de Xenón/administración & dosificación , Adulto Joven
10.
Am J Pathol ; 180(5): 1863-78, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22464947

RESUMEN

The myocardial extracellular matrix (ECM), an interwoven meshwork of proteins, glycoproteins, proteoglycans, and glycosaminoglycans that is dominated by polymeric fibrils of type I collagen, serves as the mechanical scaffold on which myocytes are arrayed for coordinated and synergistic force transduction. Following ischemic injury, cardiac ECM remodeling is initiated via localized proteolysis, the bulk of which has been assigned to matrix metalloproteinase (MMP) family members. Nevertheless, the key effector(s) of myocardial type I collagenolysis both in vitro and in vivo have remained unidentified. In this study, using cardiac explants from mice deficient in each of the major type I collagenolytic MMPs, including MMP-13, MMP-8, MMP-2, MMP-9, or MT1-MMP, we identify the membrane-anchored MMP, MT1-MMP, as the dominant collagenase that is operative within myocardial tissues in vitro. Extending these observations to an in vivo setting, mice heterozygous for an MT1-MMP-null allele display a distinct survival advantage and retain myocardial function relative to wild-type littermates in an experimental model of myocardial infarction, effects associated with preservation of the myocardial type I collagen network as a consequence of the decreased collagenolytic potential of cardiac fibroblasts. This study identifies MT1-MMP as a key MMP responsible for effecting postinfarction cardiac ECM remodeling and cardiac dysfunction.


Asunto(s)
Matriz Extracelular/enzimología , Metaloproteinasa 14 de la Matriz/fisiología , Infarto del Miocardio/enzimología , Remodelación Ventricular/fisiología , Animales , Colágeno Tipo I/metabolismo , Matriz Extracelular/fisiología , Femenino , Fibroblastos/enzimología , Hibridación in Situ , Metaloproteinasa 14 de la Matriz/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Isquemia Miocárdica/diagnóstico por imagen , Isquemia Miocárdica/metabolismo , Técnicas de Cultivo de Órganos , Ultrasonografía
11.
Ann Am Thorac Soc ; 20(3): 397-405, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36342963

RESUMEN

Rationale: The association between organ laterality abnormalities and ciliary ultrastructural defect or genotype in primary ciliary dyskinesia is poorly understood. Objectives: To determine if there is an association between presence and/or type of laterality abnormality and ciliary ultrastructural defect or genotype. Methods: Participants with primary ciliary dyskinesia in a multicenter, prospective study were grouped based on ciliary ultrastructural defect or genotype. In a retrospective analysis of these data, the association of ciliary ultrastructural defect or genotype and likelihood of a laterality abnormality was evaluated by logistic regression adjusted for presence of two loss-of-function versus one or more not-loss-of-function variants. Results: Of 559 participants, 286 (51.2%), 215 (38.5%), and 58 (10.4%) were identified as having situs solitus, situs inversustotalis, and situs ambiguus, respectively; heterotaxy, defined as situs ambiguus with complex cardiovascular defects, was present in 14 (2.5%). Compared with the group with inner dynein arm defects with microtubular disorganization, laterality defects were more likely in the outer dynein arm defects group (odds ratio [OR], 2.07; 95% confidence interval [CI], 1.21-3.54; P < 0.01) and less likely in the normal/near normal ultrastructure group (OR, 0.04; 95% CI, 0.013-0.151; P < 0.01). Heterotaxy was present in 11 of 242 (4.5%) in the outer dynein arm defects group but 0 of 96 in the inner dynein arm defects with microtubular disorganization group (P = 0.038). Conclusion: In primary ciliary dyskinesia, risk of a laterality abnormality differs by ciliary ultrastructural defect. Pathophysiologic mechanisms underlying these differences require further exploration.


Asunto(s)
Trastornos de la Motilidad Ciliar , Síndrome de Heterotaxia , Síndrome de Kartagener , Humanos , Dineínas/genética , Estudios Prospectivos , Estudios Retrospectivos , Genotipo , Cilios/ultraestructura , Síndrome de Kartagener/genética
12.
Am J Respir Crit Care Med ; 183(7): 876-84, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21057003

RESUMEN

RATIONALE: Matrix metalloprotease (MMP)-9 is an elastolytic endopeptidase produced by activated macrophages that may be involved in the development of human pulmonary emphysema and could be inhibited with existing compounds. Mouse models have demonstrated that excess MMP-9 production can result in permanent alveolar destruction. OBJECTIVES: To determine if MMP-9 causes cigarette smoke-induced emphysema using MMP-9 knockout mice and human samples. METHODS: Mouse lungs were analyzed for inflammation and airspace enlargement using a mainstream smoke-exposure model. Human macrophage mRNA was isolated from subjects with emphysema by laser capture microdissection. Human blood monocyte mRNA was isolated from subjects with greater than 30 pack-year smoking history. Human gene expression was determined by quantitative polymerase chain reaction and compared with emphysema severity determined by automated computed tomography analysis. Plasma Clara cell secretory protein and surfactant protein-D were quantified to measure ongoing lung injury. MEASUREMENTS AND MAIN RESULTS: Mice deficient in MMP-9 develop the same degree of cigarette smoke-induced inflammation and airspace enlargement as strain-matched controls. Macrophages are the predominant source of MMP-9 production in human emphysema specimens and similar quantities of macrophage MMP-9 mRNA is present in areas of lung with and without emphysema. Circulating monocytes produce more MMP-9 in individuals with advanced emphysema severity despite no correlation of MMP-9 with markers of ongoing lung damage. CONCLUSIONS: These results suggest that MMP-9 in humans who smoke is similar to smoke-exposed mice, where MMP-9 is present in emphysematous lung but not correlated with the emphysema. To the degree that the mechanisms of emphysema in humans who smoke resemble the mouse model, these data suggest specific inhibition of MMP-9 is unlikely to be an effective therapy for cigarette smoke-induced emphysema. Clinical trial registered with www.clinicaltrials.gov (NCT 00757120).


Asunto(s)
Metaloproteinasa 9 de la Matriz/metabolismo , Enfisema Pulmonar/enzimología , Enfisema Pulmonar/patología , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Anciano , Análisis de Varianza , Animales , Biopsia con Aguja , Líquido del Lavado Bronquioalveolar/citología , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/metabolismo , Enfisema Pulmonar/inducido químicamente , ARN Mensajero/análisis , Valores de Referencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Humo , Fumar , Técnicas de Cultivo de Tejidos
13.
Sci Adv ; 8(8): eabm5900, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35213222

RESUMEN

Tissue injury can drive secondary organ injury; however, mechanisms and mediators are not well understood. To identify interorgan cross-talk mediators, we used acute kidney injury (AKI)-induced acute lung injury (ALI) as a clinically important example. Using kidney and lung single-cell RNA sequencing after AKI in mice followed by ligand-receptor pairing analysis across organs, kidney ligands to lung receptors, we identify kidney-released circulating osteopontin (OPN) as a novel AKI-ALI mediator. OPN release from kidney tubule cells triggered lung endothelial leakage, inflammation, and respiratory failure. Pharmacological or genetic OPN inhibition prevented AKI-ALI. Transplantation of ischemic wt kidneys caused AKI-ALI, but not of ischemic OPN-global knockout kidneys, identifying kidney-released OPN as necessary interorgan signal to cause AKI-ALI. We show that OPN serum levels are elevated in patients with AKI and correlate with kidney injury. Our results demonstrate feasibility of using ligand-receptor analysis across organs to identify interorgan cross-talk mediators and may have important therapeutic implications in human AKI-ALI and multiorgan failure.


Asunto(s)
Lesión Renal Aguda , Lesión Pulmonar Aguda , Insuficiencia Respiratoria , Lesión Renal Aguda/etiología , Lesión Pulmonar Aguda/complicaciones , Lesión Pulmonar Aguda/prevención & control , Animales , Femenino , Humanos , Riñón , Ligandos , Masculino , Ratones , Osteopontina
15.
Magn Reson Med ; 65(3): 620-6, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21337400

RESUMEN

Quantitative measurement of lung microstructure is of great significance in assessment of pulmonary disease, particularly in the earliest stages. The technique for MRI-based 3He lung morphometry was previously developed and validated for human lungs, and was recently extended to ex vivo mouse lungs. The technique yields accurate, quantitative information about the microstructure and geometry of acinar airways. In this study, the 3He lung morphometry technique is successfully implemented for in vivo studies of mice. Results indicate excellent agreement between in vivo morphometry via 3He MRI and microscopic morphometry after sacrifice. This opens up new avenues for application of the technique as a precise, noninvasive, in vivo biomarker of changes in lung microstructure, within various mouse models of lung disease.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Helio , Pulmón/citología , Administración por Inhalación , Animales , Medios de Contraste/administración & dosificación , Femenino , Helio/administración & dosificación , Isótopos/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Radiofármacos/administración & dosificación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
16.
Mol Imaging Biol ; 23(6): 905-913, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34137002

RESUMEN

PURPOSE: We tested whether the translocator protein (TSPO)-targeted positron emission tomography (PET) tracer, N-acetyl-N-(2-[11C]methoxybenzyl)-2-phenoxy-5-pyridinamine ([11C]PBR28), could distinguish macrophage dominant from neutrophilic inflammation better than 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) in mouse models of lung inflammation and assessed TSPO association with macrophages in lung tissue from the mouse models and in patients with chronic obstructive pulmonary disease (COPD). PROCEDURES: MicroPET imaging quantified [11C]PBR28 and [18F]FDG lung uptake in wild-type (Wt) C57BL/6J or heterozygous transgenic monocyte-deficient Wt/opT mice at 49 days after Sendai virus (SeV) infection, during macrophage-dominant inflammation, and in Wt mice at 3 days after SeV infection or 24 h after endotoxin instillation during neutrophilic inflammation. Immunohistochemical staining for TSPO in macrophages and neutrophils was performed using Mac3 and Ly6G for cell identification in mouse lung sections and CD68 and neutrophil elastase (NE) in human lung sections taken from explanted lungs from patients with COPD undergoing lung transplantation and donor lungs rejected for transplantation. Differences in tracer uptake among SeV-infected, endotoxin-treated, and uninfected/untreated control mice and in TSPO staining between neutrophils and macrophage populations in human lung sections were tested using analysis of variance. RESULTS: In Wt mice, [11C]PBR28 uptake (% injected dose/ml lung tissue) increased significantly with macrophage-dominant inflammation at 49 days (D49) after SeV infection compared to controls (p = <0.001) but not at 3 days (D49) after SeV infection (p = 0.167). [11C]PBR28 uptake was unchanged at 24 h after endotoxin instillation (p = 0.958). [18F]FDG uptake increased to a similar degree in D3 and D49 SeV-infected and endotoxin-treated Wt mice compared to controls with no significant difference in the degree of increase among the tested conditions. [11C]PBR28 but not [18F]FDG lung uptake at D49 post-SeV infection was attenuated in Wt/opT mice compared to Wt mice. TSPO localized predominantly to macrophages in mouse lung tissue by immunostaining, and TSPO staining intensity was significantly higher in CD68+ cells compared to neutrophils in the human lung sections. CONCLUSIONS: PET imaging with [11C]PBR28 can specifically detect macrophages versus neutrophils during lung inflammation and may be a useful biomarker of macrophage accumulation in lung disease.


Asunto(s)
Fluorodesoxiglucosa F18 , Tomografía de Emisión de Positrones , Animales , Fluorodesoxiglucosa F18/metabolismo , Humanos , Pulmón/diagnóstico por imagen , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Tomografía de Emisión de Positrones/métodos , Receptores de GABA/metabolismo
17.
Am J Respir Cell Mol Biol ; 43(5): 576-84, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20008282

RESUMEN

Oxidative stress is widely proposed as a pathogenic mechanism for chronic obstructive pulmonary disease (COPD), but the molecular pathway connecting oxidative damage to tissue destruction remains to be fully defined. We suggest that reactive oxygen species (ROS) oxidatively damage nucleic acids, and this effect requires multiple repair mechanisms, particularly base excision pathway components 8-oxoguanine-DNA glycosylase (OGG1), endonuclease III homologue 1 (NTH1), and single-strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1), as well as the nucleic acid-binding protein, Y-box binding protein 1 (YB1). This study was therefore designed to define the levels of nucleic-acid oxidation and expression of genes involved in the repair of COPD and in corresponding models of this disease. We found significant oxidation of nucleic acids localized to alveolar lung fibroblasts, increased levels of OGG1 mRNA expression, and decreased concentrations of NTH1, SMUG1, and YB1 mRNA in lung samples from subjects with very severe COPD compared with little or no COPD. Mice exposed to cigarette smoke exhibited a time-dependent accumulation of nucleic-acid oxidation in alveolar fibroblasts, which was associated with an increase in OGG1 and YB1 mRNA concentrations. Similarly, human lung fibroblasts exposed to cigarette smoke extract exhibited ROS-dependent nucleic-acid oxidation. The short interfering RNA (siRNA)-dependent knockdown of OGG1 and YB1 expression increased nucleic-acid oxidation at the basal state and after exposure to cigarette smoke. Together, our results demonstrate ROS-dependent, cigarette smoke-induced nucleic-acid oxidation in alveolar fibroblasts, which may play a role in the pathogenesis of emphysema.


Asunto(s)
Fibroblastos/metabolismo , Fibroblastos/patología , Ácidos Nucleicos/metabolismo , Fumar/efectos adversos , Adulto , Anciano , Animales , Apoptosis , ADN Glicosilasas/antagonistas & inhibidores , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Desoxirribonucleasa (Dímero de Pirimidina)/metabolismo , Regulación hacia Abajo , Enfisema/enzimología , Enfisema/genética , Enfisema/patología , Femenino , Fibroblastos/enzimología , Humanos , Pulmón , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oxidación-Reducción , Alveolos Pulmonares/enzimología , Alveolos Pulmonares/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Uracil-ADN Glicosidasa/metabolismo , Proteína 1 de Unión a la Caja Y
18.
Am J Respir Crit Care Med ; 180(9): 834-45, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19661247

RESUMEN

RATIONALE: Induced mainly by cigarette smoking, chronic obstructive pulmonary disease (COPD) is a global public health problem characterized by progressive difficulty in breathing and increased mucin production. Previously, we reported that acrolein levels found in COPD sputum could activate matrix metalloproteinase-9 (MMP9). OBJECTIVES: To determine whether acrolein increases expression and activity of MMP14, a critical membrane-bound endopeptidase that can initial a MMP-activation cascade. METHODS: MMP14 activity and adduct formation were measured following direct acrolein treatment. MMP14 expression and activity was measured in human airway epithelial cells. MMP14 immunohistochemistry was performed with COPD tissue, and in acrolein- or tobacco-exposed mice. MEASUREMENTS AND MAIN RESULTS: In a cell-free system, acrolein, in concentrations equal to those found in COPD sputum, directly adducted cysteine 319 in the MMP14 hemopexin-like domain and activated MMP14. In cells, acrolein increased MMP14 activity, which was inhibited by a proprotein convertase inhibitor, hexa-d-arginine. In the airway epithelium of COPD subjects, immunoreactive MMP14 protein increased. In mouse lung, acrolein or tobacco smoke increased lung MMP14 activity and protein. In cells, acrolein-induced MMP14 transcripts were inhibited by an epidermal growth factor receptor (EGFR) neutralizing antibody, EGFR kinase inhibitor, metalloproteinase inhibitor, or mitogen-activated protein kinase (MAPK) 3/2 or MAPK8 inhibitors, but not a MAPK14 inhibitor. Decreasing the MMP14 protein and activity in vitro by small interfering (si)RNA to MMP14 diminished the acrolein-induced MUC5AC transcripts. In acrolein-exposed mice or transgenic mice with lung-specific transforming growth factor-alpha (an EGFR ligand) expression, lung MMP14 and MUC5AC levels increased and these effects were inhibited by a EGFR inhibitor, erlotinib. CONCLUSIONS: Taken together, these findings implicate acrolein-induced MMP14 expression and activity in mucin production in COPD.


Asunto(s)
Metaloproteinasa 14 de la Matriz/metabolismo , Mucinas/biosíntesis , Mucosa Respiratoria/metabolismo , Acroleína/metabolismo , Animales , Activación Enzimática , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Clorhidrato de Erlotinib , Regulación Enzimológica de la Expresión Génica , Humanos , Pulmón/enzimología , Pulmón/metabolismo , Ratones , Mucinas/metabolismo , Inhibidores de Proteínas Quinasas/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Quinazolinas/metabolismo , Mucosa Respiratoria/ultraestructura
19.
Am J Respir Cell Mol Biol ; 41(4): 379-84, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19491341

RESUMEN

Diagnosis and therapy of chronic inflammatory lung disease is limited by the need for individualized biomarkers that provide insight into pathogenesis. Herein we show that mouse models of chronic obstructive lung disease exhibit an increase in lung chitinase production but cannot predict which chitinase family member may be equivalently increased in humans with corresponding lung disease. Moreover, we demonstrate that lung macrophage production of chitinase 1 is selectively increased in a subset of subjects with severe chronic obstructive pulmonary disease, and this increase is reflected in plasma levels. The findings provide a means to noninvasively track alternatively activated macrophages in chronic lung disease and thereby better differentiate molecular phenotypes in heterogeneous patient populations.


Asunto(s)
Quitinasas/biosíntesis , Glicoproteínas/biosíntesis , Macrófagos Alveolares/enzimología , Enfermedad Pulmonar Obstructiva Crónica/enzimología , Adipoquinas , Anciano , Animales , Biomarcadores , Proteína 1 Similar a Quitinasa-3 , Quitinasas/sangre , Quitinasas/genética , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Glicoproteínas/sangre , Glicoproteínas/genética , Humanos , Interleucina-13/fisiología , Lectinas , Pulmón/enzimología , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Ovalbúmina/toxicidad , Filogenia , Enfermedad Pulmonar Obstructiva Crónica/sangre , Enfermedad Pulmonar Obstructiva Crónica/clasificación , Enfermedad Pulmonar Obstructiva Crónica/patología , ARN Mensajero/biosíntesis , Homología de Secuencia de Aminoácido , Índice de Severidad de la Enfermedad , Fumar/sangre , Especificidad de la Especie
20.
Am J Respir Cell Mol Biol ; 39(4): 400-11, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18441282

RESUMEN

Cigarette smoke (CS) is the main risk factor for chronic obstructive pulmonary disease (COPD). Terminal bronchioles are critical zones in the pathophysiology of COPD, but little is known about the cellular and molecular changes that occur in cells lining terminal bronchioles in response to CS. We subjected C57BL/6 mice to CS (6 d/wk, up to 6 mo), looked for morphologic changes lining the terminal bronchioles, and used laser capture microdissection to selectively isolate cells in terminal bronchioles to study gene expression. Morphologic and immunohistochemical analyses showed that Clara cell predominance remained despite 6 months of CS exposure. Since Clara cells have a role in protection against oxidative stress, we focused on the expression of antioxidant/detoxification genes using microarray analysis. Of the 35 antioxidant/detoxification genes with at least 2.5-fold increased expression in response to 6 months of CS exposure, 21 were NF-E2-related factor 2 (Nrf2)-regulated genes. Among these were cytochrome P450 1b1, glutathione reductase, thioredoxin reductase, and members of the glutathione S-transferase family, as well as Nrf2 itself. In vitro studies using immortalized murine Clara cells (C22) showed that CS induced the stabilization and nuclear translocation of Nrf2, which correlated with the induction of antioxidant and detoxification genes. Furthermore, decreasing Nrf2 expression by siRNA resulted in a corresponding decrease in CS-induced expression of several antioxidant and detoxification genes by C22 cells. These data suggest that the protective response by Clara cells to CS exposure is predominantly regulated by the transcription factor Nrf2.


Asunto(s)
Bronquiolos/patología , Factor 2 Relacionado con NF-E2/fisiología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Humo/efectos adversos , Animales , Antioxidantes/metabolismo , Bronquiolos/metabolismo , Núcleo Celular/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Transporte de Proteínas , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfermedad Pulmonar Obstructiva Crónica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA