Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Hum Mol Genet ; 31(11): 1884-1908, 2022 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-35094084

RESUMEN

X-linked lissencephaly with abnormal genitalia (XLAG) and developmental epileptic encephalopathy-1 (DEE1) are caused by mutations in the Aristaless-related homeobox (ARX) gene, which encodes a transcription factor responsible for brain development. It has been unknown whether the phenotypically diverse XLAG and DEE1 phenotypes may converge on shared pathways. To address this question, a label-free quantitative proteomic approach was applied to the neonatal brain of Arx knockout (ArxKO/Y) and knock-in polyalanine (Arx(GCG)7/Y) mice that are respectively models for XLAG and DEE1. Gene ontology and protein-protein interaction analysis revealed that cytoskeleton, protein synthesis and splicing control are deregulated in an allelic-dependent manner. Decreased α-tubulin content was observed both in Arx mice and Arx/alr-1(KO) Caenorhabditis elegans ,and a disorganized neurite network in murine primary neurons was consistent with an allelic-dependent secondary tubulinopathy. As distinct features of Arx(GCG)7/Y mice, we detected eIF4A2 overexpression and translational suppression in cortex and primary neurons. Allelic-dependent differences were also established in alternative splicing (AS) regulated by PUF60 and SAM68. Abnormal AS repertoires in Neurexin-1, a gene encoding multiple pre-synaptic organizers implicated in synaptic remodelling, were detected in Arx/alr-1(KO) animals and in Arx(GCG)7/Y epileptogenic brain areas and depolarized cortical neurons. Consistent with a conserved role of ARX in modulating AS, we propose that the allelic-dependent secondary synaptopathy results from an aberrant Neurexin-1 repertoire. Overall, our data reveal alterations mirroring the overlapping and variant effects caused by null and polyalanine expanded mutations in ARX. The identification of these effects can aid in the design of pathway-guided therapy for ARX endophenotypes and NDDs with overlapping comorbidities.


Asunto(s)
Encefalopatías , Lisencefalia , Animales , Encefalopatías/genética , Genes Homeobox , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Lisencefalia/genética , Ratones , Microtúbulos/metabolismo , Mutación , Proteómica , ARN , Factores de Transcripción/genética
2.
Development ; 147(15)2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32675280

RESUMEN

Post-translational histone modifications regulate chromatin compaction and gene expression to control many aspects of development. Mutations in genes encoding regulators of H3K4 methylation are causally associated with neurodevelopmental disorders characterized by intellectual disability and deficits in motor functions. However, it remains unclear how H3K4 methylation influences nervous system development and contributes to the aetiology of disease. Here, we show that the catalytic activity of set-2, the Caenorhabditis elegans homologue of the H3K4 methyltransferase KMT2F/G (SETD1A/B) genes, controls embryonic transcription of neuronal genes and is required for establishing proper axon guidance, and for neuronal functions related to locomotion and learning. Moreover, we uncover a striking correlation between components of the H3K4 regulatory machinery mutated in neurodevelopmental disorders and the process of axon guidance in C. elegans Thus, our study supports an epigenetic-based model for the aetiology of neurodevelopmental disorders, based on an aberrant axon guidance process originating from deregulated H3K4 methylation.


Asunto(s)
Orientación del Axón , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Histonas/metabolismo , Trastornos del Neurodesarrollo/metabolismo , Neurogénesis , Proteínas Nucleares/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Histonas/genética , Metilación , Trastornos del Neurodesarrollo/genética , Proteínas Nucleares/genética
3.
Hum Mol Genet ; 28(24): 4089-4102, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31691806

RESUMEN

A disproportional large number of neurodevelopmental disorders (NDDs) is caused by variants in genes encoding transcription factors and chromatin modifiers. However, the functional interactions between the corresponding proteins are only partly known. Here, we show that KDM5C, encoding a H3K4 demethylase, is at the intersection of transcriptional axes under the control of three regulatory proteins ARX, ZNF711 and PHF8. Interestingly, mutations in all four genes (KDM5C, ARX, ZNF711 and PHF8) are associated with X-linked NDDs comprising intellectual disability as a core feature. in vitro analysis of the KDM5C promoter revealed that ARX and ZNF711 function as antagonist transcription factors that activate KDM5C expression and compete for the recruitment of PHF8. Functional analysis of mutations in these genes showed a correlation between phenotype severity and the reduction in KDM5C transcriptional activity. The KDM5C decrease was associated with a lack of repression of downstream target genes Scn2a, Syn1 and Bdnf in the embryonic brain of Arx-null mice. Aiming to correct the faulty expression of KDM5C, we studied the effect of the FDA-approved histone deacetylase inhibitor suberanilohydroxamic acid (SAHA). In Arx-KO murine ES-derived neurons, SAHA was able to rescue KDM5C depletion, recover H3K4me3 signalling and improve neuronal differentiation. Indeed, in ARX/alr-1-deficient Caenorhabditis elegans animals, SAHA was shown to counteract the defective KDM5C/rbr-2-H3K4me3 signalling, recover abnormal behavioural phenotype and ameliorate neuronal maturation. Overall, our studies indicate that KDM5C is a conserved and druggable effector molecule across a number of NDDs for whom the use of SAHA may be considered a potential therapeutic strategy.


Asunto(s)
Histona Demetilasas/metabolismo , Trastornos del Neurodesarrollo/metabolismo , Animales , Caenorhabditis elegans , Línea Celular , Proteínas de Unión al ADN/metabolismo , Femenino , Células HEK293 , Inhibidores de Histona Desacetilasas/farmacología , Histona Demetilasas/genética , Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Metilación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Trastornos del Neurodesarrollo/genética , Neuronas/metabolismo , Regiones Promotoras Genéticas , Transducción de Señal , Factores de Transcripción/metabolismo , Vorinostat/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA