Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 60(25): 13803-13806, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-33725373

RESUMEN

Introducing hierarchical porosity to zeolites is vital for providing molecular access to microporous domains. Yet, the dynamics of meso- and macropore formation has remained elusive and pore space ill-characterized by a lack of (in situ) microscopic tools sensitive to nanoporosity. Here, we probe hierarchical porosity formation within a zeolite ZSM-5 crystal in real-time by in situ fluorescence microscopy during desilication. In addition, we introduce small-angle X-ray scattering microscopy as novel characterization tool to map intracrystal meso- and macropore properties. It is shown that hierarchical porosity formation initiates at the crystal surface and propagates to the crystal core via a pore front with decreasing rate. Also, hierarchical porosity only establishes in specific (segments of) subunits which constitute ZSM-5. Such space-dependent meso- and macroporosity implies local discrepancies in diffusion, performance and deactivation behaviors even within a zeolite crystal.

2.
Chemistry ; 25(29): 7158-7167, 2019 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-30828875

RESUMEN

Hydrothermal treatment is a common method used to modify the physicochemical properties of zeolite-based catalyst materials. It alters the number and type of acid sites through dealumination and increases molecular diffusion by mesopore formation. Steaming also reduces the structural integrity of zeolite frameworks. In this study, Raman microscopy has been used to map large zeolite ZSM-5 crystals before and after steaming. 3D elemental maps of T-O (T: Al or Si) sites of the zeolite were obtained. The Raman active vibrational bands were determined, which are indicative of (non-) framework Al, as well as of structural integrity. Zeolite steaming caused the introduction of additional heterogeneities within the zeolite framework. Al migration and the formation of extra-framework Al species were observed. The described experiments demonstrate the capability of 3D Raman spectroscopy as a valuable tool to obtain information on the spatial distributions of framework elements as well as defects within a zeolite-based material.

3.
J Am Chem Soc ; 140(29): 9154-9158, 2018 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-30003782

RESUMEN

Understanding the 3-D distribution and nature of active sites in heterogeneous catalysts is critical to developing structure-function relationships. However, this is difficult to achieve in microporous materials as there is little relative z-contrast between active and inactive framework elements (e.g., Al, O, P, and Si), making them difficult to differentiate with electron microscopies. We have applied atom probe tomography (APT), currently the only nanometer-scale 3-D microscopy to offer routine light element contrast, to the methanol-to-hydrocarbons (MTH) catalyst SAPO-34, with Si as the active site, which may be present in the framework as either isolated Si species or clusters (islands) of Si atoms. 29Si solid-state NMR data on isotopically enriched and natural abundance materials are consistent with the presence of Si islands, and the APT results have been complemented with simulations to show the smallest detectable cluster size as a function of instrument spatial resolution and detector efficiency. We have identified significant Si-Si affinity in the materials, as well as clustering of coke deposited by the MTH reaction (13CH3OH used) and an affinity between Brønsted acid sites and coke. A comparison with simulations shows that the ultimate spatial resolution that can be attained by APT applied to molecular sieves is 0.5-1 nm. Finally, the observed 13C clusters are consistent with hydrocarbon pool mechanism intermediates that are preferentially located in regions of increased Brønsted acidity.

4.
Angew Chem Int Ed Engl ; 55(37): 11173-7, 2016 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-27485276

RESUMEN

Understanding the formation of carbon deposits in zeolites is vital to developing new, superior materials for various applications, including oil and gas conversion processes. Herein, atom probe tomography (APT) has been used to spatially resolve the 3D compositional changes at the sub-nm length scale in a single zeolite ZSM-5 crystal, which has been partially deactivated by the methanol-to-hydrocarbons reaction using (13) C-labeled methanol. The results reveal the formation of coke in agglomerates that span length scales from tens of nanometers to atomic clusters with a median size of 30-60 (13) C atoms. These clusters correlate with local increases in Brønsted acid site density, demonstrating that the formation of the first deactivating coke precursor molecules occurs in nanoscopic regions enriched in aluminum. This nanoscale correlation underscores the importance of carefully engineering materials to suppress detrimental coke formation.

5.
Chem Commun (Camb) ; 53(97): 13012-13014, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29082987

RESUMEN

Characterizing the structures of zeolites and their catalytic performance with high-spatial-resolution is vital to developing new solid catalysts. We demonstrate the application of photoinduced force microscopy (PiFM), with nanometer scale resolution across the infrared spectral range, for the study of zeolite ZSM-5 thin-films with various Si/Al ratios after the methanol-to-hydrocarbons reaction. This first-of-its kind nanometer scale infrared imaging of zeolite materials demonstrates the possibility of PiFM for the study of functional porous materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA