Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Science ; 375(6584): eabk2432, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35239393

RESUMEN

For more than 100 years, the fruit fly Drosophila melanogaster has been one of the most studied model organisms. Here, we present a single-cell atlas of the adult fly, Tabula Drosophilae, that includes 580,000 nuclei from 15 individually dissected sexed tissues as well as the entire head and body, annotated to >250 distinct cell types. We provide an in-depth analysis of cell type-related gene signatures and transcription factor markers, as well as sexual dimorphism, across the whole animal. Analysis of common cell types between tissues, such as blood and muscle cells, reveals rare cell types and tissue-specific subtypes. This atlas provides a valuable resource for the Drosophila community and serves as a reference to study genetic perturbations and disease models at single-cell resolution.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/genética , Transcriptoma , Animales , Núcleo Celular/metabolismo , Bases de Datos Genéticas , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Femenino , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Genes de Insecto , Masculino , RNA-Seq , Caracteres Sexuales , Análisis de la Célula Individual , Factores de Transcripción/genética
2.
Front Cell Dev Biol ; 9: 630272, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777939

RESUMEN

Across the animal kingdom, macrophages are known for their functions in innate immunity, but they also play key roles in development and homeostasis. Recent insights from single cell profiling and other approaches in the invertebrate model organism Drosophila melanogaster reveal substantial diversity among Drosophila macrophages (plasmatocytes). Together with vertebrate studies that show genuine expression signatures of macrophages based on their organ microenvironments, it is expected that Drosophila macrophage functional diversity is shaped by their anatomical locations and systemic conditions. In vivo evidence for diverse macrophage functions has already been well established by Drosophila genetics: Drosophila macrophages play key roles in various aspects of development and organogenesis, including embryogenesis and development of the nervous, digestive, and reproductive systems. Macrophages further maintain homeostasis in various organ systems and promote regeneration following organ damage and injury. The interdependence and interplay of tissues and their local macrophage populations in Drosophila have implications for understanding principles of organ development and homeostasis in a wide range of species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA