Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 141(12): 1425-1441, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36179280

RESUMEN

Upregulation of the proto-oncogene T-cell leukemia/lymphoma 1A (TCL1A) is causally implicated in various B-cell and T-cell malignancies. High-level TCL1A correlates with aggressive disease features and inferior clinical outcomes. However, the molecular and cell biological consequences of, particularly nuclear, TCL1A are not fully elucidated. We observed here in mouse models of subcellular site-specific TCL1A-induced lymphomagenesis that TCL1A exerts a strong transforming impact via nuclear topography. In proteomic screens of TCL1A-bound molecules in chronic lymphocytic leukemia (CLL) cells and B-cell lymphoma lines, we identified regulators of cell cycle and DNA repair pathways as novel TCL1A interactors, particularly enriched under induced DNA damage and mitosis. By functional mapping and in silico modeling, we specifically identified the mitotic checkpoint protein, cell division cycle 20 (CDC20), as a direct TCL1A interactor. According to the regulatory impact of TCL1A on the activity of the CDC20-containing mitotic checkpoint and anaphase-promoting complexes during mitotic progression, TCL1A overexpression accelerated cell cycle transition in B-cell lymphoma lines, impaired apoptotic damage responses in association with pronounced chromosome missegregation, and caused cellular aneuploidy in Eµ-TCL1A mice. Among hematopoietic cancers, CDC20 levels seem particularly low in CLL. CDC20 expression negatively correlated with TCL1A and lower expression marked more aggressive and genomically instable disease and cellular phenotypes. Knockdown of Cdc20 in TCL1A-initiated murine CLL promoted aneuploidy and leukemic acceleration. Taken together, we discovered a novel cell cycle-associated effect of TCL1A abrogating controlled cell cycle transition. This adds to our concept of oncogenic TCL1A by targeting genome stability. Overall, we propose that TCL1A acts as a pleiotropic adapter molecule with a synergistic net effect of multiple hijacked pathways.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfoma de Células B , Ratones , Animales , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteómica , Linfoma de Células B/genética , Ciclo Celular/genética , Proto-Oncogenes , Proteínas de Ciclo Celular/genética , Mitosis
2.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38396944

RESUMEN

Aquaporins (AQPs) constitute a wide family of water channels implicated in all kind of physiological processes. Zinc is the second most abundant trace element in the human body and a few studies have highlighted regulation of AQP0 and AQP4 by zinc. In the present work, we addressed the putative regulation of AQPs by zinc cations in silico through molecular dynamics simulations of human AQP0, AQP2, AQP4, and AQP5. Our results align with other scales of study and several in vitro techniques, hence strengthening the reliability of this regulation by zinc. We also described two distinct putative molecular mechanisms associated with the increase or decrease in AQPs' water permeability after zinc binding. In association with other studies, our work will help deciphering the interaction networks existing between zinc and channel proteins.


Asunto(s)
Acuaporinas , Simulación de Dinámica Molecular , Humanos , Acuaporina 2/metabolismo , Zinc/metabolismo , Agua/química , Reproducibilidad de los Resultados , Acuaporinas/metabolismo , Permeabilidad , Cationes/metabolismo
3.
Nucleic Acids Res ; 49(8): 4768-4781, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33856462

RESUMEN

Telomerase plays critical roles in cellular aging, in the emergence and/or development of cancer, and in the capacity for stem-cell renewal, consists of a catalytic telomerase reverse transcriptase (TERT) and a template-encoding RNA (TER). TERs from diverse organisms contain two conserved structural elements: the template-pseudoknot (T-PK) and a helical three-way junction (TWJ). Species-specific features of the structure and function of telomerase make obtaining a more in-depth understanding of the molecular mechanism of telomerase particularly important. Here, we report the first structural studies of N-terminally truncated TERTs from Candida albicans and Candida tropicalis in apo form and complexed with their respective TWJs in several conformations. We found that Candida TERT proteins perform only one round of telomere addition in the presence or absence of PK/TWJ and display standard reverse transcriptase activity. The C-terminal domain adopts at least two extreme conformations and undergoes conformational interconversion, which regulates the catalytic activity. Most importantly, we identified a conserved tertiary structural motif, called the U-motif, which interacts with the reverse transcriptase domain and is crucial for catalytic activity. Together these results shed new light on the structure and mechanics of fungal TERTs, which show common TERT characteristics, but also display species-specific features.


Asunto(s)
Secuencias de Aminoácidos , Candida albicans/química , Candida tropicalis/química , Dominio Catalítico , Telomerasa/química , Secuencias de Aminoácidos/genética , Candida albicans/enzimología , Candida tropicalis/enzimología , Catálisis , Dominio Catalítico/genética , Cromatografía en Gel , Cristalografía por Rayos X , Dispersión Dinámica de Luz , Escherichia coli/metabolismo , Técnicas In Vitro , Modelos Moleculares , Mutación , Proteínas Recombinantes , Telomerasa/genética
4.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36675012

RESUMEN

Aquaporins (AQPs) are water channels widely distributed in living organisms and involved in many pathophysiologies as well as in cell volume regulations (CVR). In the present study, based on the structural homology existing between mineralocorticoid receptors (MRs), glucocorticoid receptors (GRs), cholesterol consensus motif (CCM) and the extra-cellular vestibules of AQPs, we investigated the binding of corticosteroids on the AQP family through in silico molecular dynamics simulations of AQP2 interactions with cortisol. We propose, for the first time, a putative AQPs corticosteroid binding site (ACBS) and discussed its conservation through structural alignment. Corticosteroids can mediate non-genomic effects; nonetheless, the transduction pathways involved are still misunderstood. Moreover, a growing body of evidence is pointing toward the existence of a novel membrane receptor mediating part of these rapid corticosteroids' effects. Our results suggest that the naturally produced glucocorticoid cortisol inhibits channel water permeability. Based on these results, we propose a detailed description of a putative underlying molecular mechanism. In this process, we also bring new insights on the regulatory function of AQPs extra-cellular loops and on the role of ions in tuning the water permeability. Altogether, this work brings new insights into the non-genomic effects of corticosteroids through the proposition of AQPs as the membrane receptor of this family of regulatory molecules. This original result is the starting point for future investigations to define more in-depth and in vivo the validity of this functional model.


Asunto(s)
Acuaporina 2 , Acuaporinas , Agua/metabolismo , Hidrocortisona/farmacología , Acuaporinas/metabolismo , Corticoesteroides/farmacología , Permeabilidad
5.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37762101

RESUMEN

Aquaporins (AQPs) constitute a wide and ancient protein family of transmembrane channels dedicated to the regulation of water exchange across biological membranes. In plants, higher numbers of AQP homologues have been conserved compared to other kingdoms of life such as in animals or in bacteria. As an illustration of this plant-specific functional diversity, plasma membrane intrinsic proteins (PIPs, i.e., a subfamily of plant AQPs) possess a long intracellular loop D, which can gate the channel by changing conformation as a function of the cellular environment. However, even though the closure of the AQP by loop D conformational changes is well described, the opening of the channel, on the other hand, is still misunderstood. Several studies have pointed to phosphorylation events as the trigger for the transition from closed- to open-channel states. Nonetheless, no clear answer has been obtained yet. Hence, in order to gain a more complete grasp of plant AQP regulation through this intracellular loop D gating, we investigated the opening of the channel in silico through molecular dynamics simulations of the crystallographic structure of Spinacia oleracea PIP2;1 (SoPIP2;1). Through this technique, we addressed the mechanistic details of these conformational changes, which eventually allowed us to propose a molecular mechanism for PIP functional regulation by loop D phosphorylation. More precisely, our results highlight the phosphorylation of loop D serine 188 as a trigger of SoPIP2;1 water channel opening. Finally, we discuss the significance of this result for the study of plant AQP functional diversity.


Asunto(s)
Acuaporinas , Simulación de Dinámica Molecular , Animales , Fosforilación , Membrana Celular , Cristalografía , Proteínas de la Membrana
6.
Planta ; 250(1): 347-366, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31037486

RESUMEN

MAIN CONCLUSION: The involvement of a WRKY transcription factor in the regulation of lignan biosynthesis in flax using a hairy root system is described. Secoisolariciresinol is the main flax lignan synthesized by action of LuPLR1 (pinoresinol-lariciresinol reductase 1). LuPLR1 gene promoter deletion experiments have revealed a promoter region containing W boxes potentially responsible for the response to Fusarium oxysporum. W boxes are bound by WRKY transcription factors that play a role in the response to stress. A candidate WRKY transcription factor, LuWRKY36, was isolated from both abscisic acid and Fusarium elicitor-treated flax cell cDNA libraries. This transcription factors contains two WRKY DNA-binding domains and is a homolog of AtWRKY33. Different approaches confirmed LuWRKY36 binding to a W box located in the LuPLR1 promoter occurring through a unique direct interaction mediated by its N-terminal WRKY domain. Our results propose that the positive regulator action of LuWRKY36 on the LuPLR1 gene regulation and lignan biosynthesis in response to biotic stress is positively mediated by abscisic acid and inhibited by ethylene. Additionally, we demonstrate a differential Fusarium elicitor response in susceptible and resistant flax cultivars, seen as a faster and stronger LuPLR1 gene expression response accompanied with higher secoisolariciresinol accumulation in HR of the resistant cultivar.


Asunto(s)
Lino/genética , Fusarium/fisiología , Lignanos/biosíntesis , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/farmacología , Factores de Transcripción/metabolismo , Ácido Abscísico/farmacología , Etilenos/farmacología , Lino/metabolismo , Lino/microbiología , Biblioteca de Genes , Modelos Biológicos , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Regiones Promotoras Genéticas/genética , Estrés Fisiológico , Factores de Transcripción/genética
7.
Planta ; 249(6): 1695-1714, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30895445

RESUMEN

MAIN CONCLUSION: This paper provides an overview on activity, stereospecificity, expression and regulation of pinoresinol-lariciresinol reductases in plants. These enzymes are shared by the pathways to all 8-8' lignans derived from pinoresinol. Pinoresinol-lariciresinol reductases (PLR) are enzymes involved in the lignan biosynthesis after the initial dimerization of two monolignols. They catalyze two successive reduction steps leading to the production of lariciresinol or secoisolariciresinol from pinoresinol. Two secoisolariciresinol enantiomers can be synthetized with different fates. Depending on the plant species, these enantiomers are either final products (e.g., in the flaxseed where it is stored after glycosylation) or are the starting point for the synthesis of a wide range of lignans, among which the aryltetralin type lignans are used to semisynthesize anticancer drugs such as Etoposide®. Thus, the regulation of the gene expression of PLRs as well as the possible specificities of these reductases for one reduction step or one enantiomer are key factors to fine-tune the lignan synthesis. Results published in the last decade have shed light on the presence of more than one PLR in each plant and revealed various modes of action. Nevertheless, there are not many results published on the PLRs and most of them were obtained in a limited range of species. Indeed, a number of them deal with wild and cultivated flax belonging to the genus Linum. Despite the occurrence of lignans in bryophytes, pteridophytes and monocots, data on PLRs in these taxa are still missing and indeed the whole diversity of PLRs is still unknown. This review summarizes the data, published mainly in the last decade, on the PLR gene expression, enzymatic activity and biological function.


Asunto(s)
Furanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Lignanos/metabolismo , Oxidorreductasas/metabolismo , Plantas/enzimología , Butileno Glicoles/metabolismo , Regulación Enzimológica de la Expresión Génica , Oxidorreductasas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética
8.
Plant Mol Biol ; 97(1-2): 73-101, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29713868

RESUMEN

KEY MESSAGE: Identification of DIR encoding genes in flax genome. Analysis of phylogeny, gene/protein structures and evolution. Identification of new conserved motifs linked to biochemical functions. Investigation of spatio-temporal gene expression and response to stress. Dirigent proteins (DIRs) were discovered during 8-8' lignan biosynthesis studies, through identification of stereoselective coupling to afford either (+)- or (-)-pinoresinols from E-coniferyl alcohol. DIRs are also involved or potentially involved in terpenoid, allyl/propenyl phenol lignan, pterocarpan and lignin biosynthesis. DIRs have very large multigene families in different vascular plants including flax, with most still of unknown function. DIR studies typically focus on a small subset of genes and identification of biochemical/physiological functions. Herein, a genome-wide analysis and characterization of the predicted flax DIR 44-membered multigene family was performed, this species being a rich natural grain source of 8-8' linked secoisolariciresinol-derived lignan oligomers. All predicted DIR sequences, including their promoters, were analyzed together with their public gene expression datasets. Expression patterns of selected DIRs were examined using qPCR, as well as through clustering analysis of DIR gene expression. These analyses further implicated roles for specific DIRs in (-)-pinoresinol formation in seed-coats, as well as (+)-pinoresinol in vegetative organs and/or specific responses to stress. Phylogeny and gene expression analysis segregated flax DIRs into six distinct clusters with new cluster-specific motifs identified. We propose that these findings can serve as a foundation to further systematically determine functions of DIRs, i.e. other than those already known in lignan biosynthesis in flax and other species. Given the differential expression profiles and inducibility of the flax DIR family, we provisionally propose that some DIR genes of unknown function could be involved in different aspects of secondary cell wall biosynthesis and plant defense.


Asunto(s)
Lino/genética , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Proteínas de Plantas/genética , Secuencias de Aminoácidos , Butileno Glicoles/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Evolución Molecular , Lino/clasificación , Lignanos/metabolismo , Filogenia , Proteínas de Plantas/química , Reacción en Cadena en Tiempo Real de la Polimerasa
9.
Planta ; 246(3): 405-420, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28451749

RESUMEN

MAIN CONCLUSION: This study provides new insights into the biosynthesis regulation and in planta function of the lignan yatein in flax leaves. Pinoresinol-lariciresinol reductases (PLR) catalyze the conversion of pinoresinol into secoisolariciresinol (SECO) in lignan biosynthesis. Several lignans are accumulated in high concentrations, such as SECO accumulated as secoisolariciresinol diglucoside (SDG) in seeds and yatein in aerial parts, in the flax plant (Linum usitatissimum L.) from which two PLR enzymes of opposite enantioselectivity have been isolated. While LuPLR1 catalyzes the biosynthesis of (+)-SECO leading to (+)-SDG in seeds, the role(s) of the second PLR (LuPLR2) is not completely elucidated. This study provides new insights into the in planta regulation and function of the lignan yatein in flax leaves: its biosynthesis relies on a different PLR with opposite stereospecificity but also on a distinct expression regulation. RNAi technology provided evidence for the in vivo involvement of the LuPLR2 gene in the biosynthesis of (-)-yatein accumulated in flax leaves. LuPLR2 expression in different tissues and in response to stress was studied by RT-qPCR and promoter-reporter transgenesis showing that the spatio-temporal expression of the LuPLR2 gene in leaves perfectly matches the (-)-yatein accumulation and that LuPLR2 expression and yatein production are increased by methyl jasmonate and wounding. A promoter deletion approach yielded putative regulatory elements. This expression pattern in relation to a possible role for this lignan in flax defense is discussed.


Asunto(s)
4-Butirolactona/análogos & derivados , Lino/fisiología , Genes de Plantas/genética , Oxidorreductasas/genética , Inmunidad de la Planta/genética , 4-Butirolactona/biosíntesis , Dioxoles , Lino/enzimología , Lino/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Genes de Plantas/fisiología , Glucuronidasa/metabolismo , Redes y Vías Metabólicas , Oxidorreductasas/fisiología , Inmunidad de la Planta/fisiología , Hojas de la Planta/enzimología , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Nicotiana/genética
10.
Plant Mol Biol ; 91(4-5): 375-96, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27068521

RESUMEN

X-Intrinsic Proteins (XIP) were recently identified in a narrow range of plants as a full clade within the aquaporins. These channels reportedly facilitate the transport of a wide range of hydrophobic solutes. The functional roles of XIP in planta remain poorly identified. In this study, we found three XIP genes (HbXIP1;1, HbXIP2;1 and HbXIP3;1) in the Hevea brasiliensis genome. Comprehensive bioinformatics, biochemical and structural analyses were used to acquire a better understanding of this AQP subfamily. Phylogenetic analysis revealed that HbXIPs clustered into two major groups, each distributed in a specific lineage of the order Malpighiales. Tissue-specific expression profiles showed that only HbXIP2;1 was expressed in all the vegetative tissues tested (leaves, stem, bark, xylem and latex), suggesting that HbXIP2;1 could take part in a wide range of cellular processes. This is particularly relevant to the rubber-producing laticiferous system, where this isoform was found to be up-regulated during tapping and ethylene treatments. Furthermore, the XIP transcriptional pattern is significantly correlated to latex production level. Structural comparison with SoPIP2;1 from Spinacia oleracea species provides new insights into the possible role of structural checkpoints by which HbXIP2;1 ensures glycerol transfer across the membrane. From these results, we discuss the physiological involvement of glycerol and HbXIP2;1 in water homeostasis and carbon stream of challenged laticifers. The characterization of HbXIP2;1 during rubber tree tapping lends new insights into molecular and physiological response processes of laticifer metabolism in the context of latex exploitation.


Asunto(s)
Acuaporinas/química , Acuaporinas/genética , Genoma de Planta , Hevea/genética , Látex/biosíntesis , Proteínas de Plantas/genética , Acuaporinas/aislamiento & purificación , Biología Computacional , Regulación de la Expresión Génica de las Plantas , Modelos Moleculares , Familia de Multigenes , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Homología Estructural de Proteína , Fracciones Subcelulares/metabolismo
11.
Int J Mol Sci ; 17(12)2016 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-27941652

RESUMEN

Previous works have shown the existence of protein partnerships belonging to a MultiStep Phosphorelay (MSP) in Populus putatively involved in osmosensing. This study is focused on the identification of a histidine-aspartate kinase, HK1b, paralog of HK1a. The characterization of HK1b showed its ability to homo- and hetero-dimerize and to interact with a few Histidine-containing Phosphotransfer (HPt) proteins, suggesting a preferential partnership in poplar MSP linked to drought perception. Furthermore, determinants for interaction specificity between HK1a/1b and HPts were studied by mutagenesis analysis, identifying amino acids involved in this specificity. The HK1b expression analysis in different poplar organs revealed its co-expression with three HPts, reinforcing the hypothesis of partnership participation in the MSP in planta. Moreover, HK1b was shown to act as an osmosensor with kinase activity in a functional complementation assay of an osmosensor deficient yeast strain. These results revealed that HK1b showed a different behaviour for canonical phosphorylation of histidine and aspartate residues. These phosphorylation modularities of canonical amino acids could explain the improved osmosensor performances observed in yeast. As conserved duplicates reflect the selective pressures imposed by the environmental requirements on the species, our results emphasize the importance of HK1 gene duplication in poplar adaptation to drought stress.


Asunto(s)
Ácido Aspártico/metabolismo , Presión Osmótica , Populus/enzimología , Homología de Secuencia de Aminoácido , Estrés Fisiológico , Aminoácidos/metabolismo , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Histidina Quinasa , Proteínas Mutantes/metabolismo , Mutación/genética , Filogenia , Populus/genética , Unión Proteica , Multimerización de Proteína , Reproducibilidad de los Resultados , Estrés Fisiológico/genética , Especificidad por Sustrato , Técnicas del Sistema de Dos Híbridos
12.
Nat Commun ; 15(1): 4885, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849353

RESUMEN

Inherited cardiomyopathies are common cardiac diseases worldwide, leading in the late stage to heart failure and death. The most promising treatments against these diseases are small molecules directly modulating the force produced by ß-cardiac myosin, the molecular motor driving heart contraction. Omecamtiv mecarbil and Mavacamten are two such molecules that completed phase 3 clinical trials, and the inhibitor Mavacamten is now approved by the FDA. In contrast to Mavacamten, Omecamtiv mecarbil acts as an activator of cardiac contractility. Here, we reveal by X-ray crystallography that both drugs target the same pocket and stabilize a pre-stroke structural state, with only few local differences. All-atom molecular dynamics simulations reveal how these molecules produce distinct effects in motor allostery thus impacting force production in opposite way. Altogether, our results provide the framework for rational drug development for the purpose of personalized medicine.


Asunto(s)
Simulación de Dinámica Molecular , Contracción Miocárdica , Urea , Contracción Miocárdica/efectos de los fármacos , Cristalografía por Rayos X , Humanos , Urea/análogos & derivados , Urea/farmacología , Urea/química , Miosinas Cardíacas/metabolismo , Miosinas Cardíacas/química , Miosinas Cardíacas/genética , Miosinas Ventriculares/metabolismo , Miosinas Ventriculares/química , Miosinas Ventriculares/genética , Animales , Bencilaminas , Uracilo/análogos & derivados
13.
J Mol Biol ; 436(2): 168373, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37992890

RESUMEN

The G-quadruplex (G4) is a distinct geometric and electrophysical structure compared to classical double-stranded DNA, and its stability can impede essential cellular processes such as replication, transcription, and translation. This study focuses on the BsPif1 helicase, revealing its ability to bind independently to both single-stranded DNA (ssDNA) and G4 structures. The unfolding activity of BsPif1 on G4 relies on the presence of a single tail chain, and the covalent continuity between the single tail chain and the G4's main chain is necessary for efficient G4 unwinding. This suggests that ATP hydrolysis-driven ssDNA translocation exerts a pull force on G4 unwinding. Molecular dynamics simulations identified a specific region within BsPif1 that contains five crucial amino acid sites responsible for G4 binding and unwinding. A "molecular wire stripper" model is proposed to explain BsPif1's mechanism of G4 unwinding. These findings provide a new theoretical foundation for further exploration of the G4 development mechanism in Pif1 family helicases.


Asunto(s)
Adenosina Trifosfato , ADN Helicasas , ADN de Cadena Simple , G-Cuádruplex , Adenosina Trifosfato/química , ADN de Cadena Simple/química , Hidrólisis , Simulación de Dinámica Molecular , ADN Helicasas/química
14.
Front Neurol ; 14: 1270092, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928160

RESUMEN

Ménière's disease (MD) is characterized by an abnormal dilatation of the endolymphatic compartment called endolymphatic hydrops and is associated with fluctuating hearing losses and vertigo. Corticosteroid treatment is typically administered for its anti-inflammatory effects to MD patients. However, we recently described for the first time a direct interaction of two corticosteroids (dexamethasone and cortisol) with human AQP2 which strongly inhibited water fluxes. From these initial studies, we proposed an AQPs Corticosteroids Binding Site (ACBS). In the present work, we tested the interaction of 10 molecules associated to the steroid family for this putative ACBS. We observed a wide diversity of affinity and inhibitory potential of these molecules toward AQP2 and discussed the implications for inner ear physiology. Among the tested compounds, cholecalciferol, calcitriol and oestradiol were the most efficient AQP2 water permeability inhibitors.

15.
bioRxiv ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38014327

RESUMEN

Inherited cardiomyopathies are amongst the most common cardiac diseases worldwide, leading in the late-stage to heart failure and death. The most promising treatments against these diseases are small-molecules directly modulating the force produced by ß-cardiac myosin, the molecular motor driving heart contraction. Two of these molecules that produce antagonistic effects on cardiac contractility have completed clinical phase 3 trials: the activator Omecamtiv mecarbil and the inhibitor Mavacamten. In this work, we reveal by X-ray crystallography that both drugs target the same pocket and stabilize a pre-stroke structural state, with only few local differences. All atoms molecular dynamics simulations reveal how these molecules can have antagonistic impact on the allostery of the motor by comparing ß-cardiac myosin in the apo form or bound to Omecamtiv mecarbil or Mavacamten. Altogether, our results provide the framework for rational drug development for the purpose of personalized medicine.

16.
Nat Commun ; 14(1): 3463, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308472

RESUMEN

Malaria results in more than 500,000 deaths per year and the causative Plasmodium parasites continue to develop resistance to all known agents, including different antimalarial combinations. The class XIV myosin motor PfMyoA is part of a core macromolecular complex called the glideosome, essential for Plasmodium parasite mobility and therefore an attractive drug target. Here, we characterize the interaction of a small molecule (KNX-002) with PfMyoA. KNX-002 inhibits PfMyoA ATPase activity in vitro and blocks asexual blood stage growth of merozoites, one of three motile Plasmodium life-cycle stages. Combining biochemical assays and X-ray crystallography, we demonstrate that KNX-002 inhibits PfMyoA using a previously undescribed binding mode, sequestering it in a post-rigor state detached from actin. KNX-002 binding prevents efficient ATP hydrolysis and priming of the lever arm, thus inhibiting motor activity. This small-molecule inhibitor of PfMyoA paves the way for the development of alternative antimalarial treatments.


Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Miosina Tipo IIA no Muscular , Plasmodium falciparum , Actinas , Bioensayo
17.
Nat Commun ; 14(1): 3166, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37258552

RESUMEN

To save energy and precisely regulate cardiac contractility, cardiac muscle myosin heads are sequestered in an 'off' state that can be converted to an 'on' state when exertion is increased. The 'off' state is equated with a folded-back structure known as the interacting-heads motif (IHM), which is a regulatory feature of all class-2 muscle and non-muscle myosins. We report here the human ß-cardiac myosin IHM structure determined by cryo-electron microscopy to 3.6 Å resolution, providing details of all the interfaces stabilizing the 'off' state. The structure shows that these interfaces are hot spots of hypertrophic cardiomyopathy mutations that are thought to cause hypercontractility by destabilizing the 'off' state. Importantly, the cardiac and smooth muscle myosin IHM structures dramatically differ, providing structural evidence for the divergent physiological regulation of these muscle types. The cardiac IHM structure will facilitate development of clinically useful new molecules that modulate IHM stability.


Asunto(s)
Miosinas Cardíacas , Cardiomiopatía Hipertrófica , Humanos , Miosinas Ventriculares/química , Miosinas Ventriculares/genética , Microscopía por Crioelectrón , Corazón , Cardiomiopatía Hipertrófica/genética
18.
bioRxiv ; 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37131793

RESUMEN

During normal levels of exertion, many cardiac muscle myosin heads are sequestered in an off-state even during systolic contraction to save energy and for precise regulation. They can be converted to an on-state when exertion is increased. Hypercontractility caused by hypertrophic cardiomyopathy (HCM) myosin mutations is often the result of shifting the equilibrium toward more heads in the on-state. The off-state is equated with a folded-back structure known as the interacting head motif (IHM), which is a regulatory feature of all muscle myosins and class-2 non-muscle myosins. We report here the human ß-cardiac myosin IHM structure to 3.6 Å resolution. The structure shows that the interfaces are hot spots of HCM mutations and reveals details of the significant interactions. Importantly, the structures of cardiac and smooth muscle myosin IHMs are dramatically different. This challenges the concept that the IHM structure is conserved in all muscle types and opens new perspectives in the understanding of muscle physiology. The cardiac IHM structure has been the missing puzzle piece to fully understand the development of inherited cardiomyopathies. This work will pave the way for the development of new molecules able to stabilize or destabilize the IHM in a personalized medicine approach. *This manuscript was submitted to Nature Communications in August 2022 and dealt efficiently by the editors. All reviewers received this version of the manuscript before 9 208 August 2022. They also received coordinates and maps of our high resolution structure on the 18 208 August 2022. Due to slowness of at least one reviewer, this contribution was delayed for acceptance by Nature Communications and we are now depositing in bioRxiv the originally submitted version written in July 2022 for everyone to see. Indeed, two bioRxiv contributions at lower resolution but adding similar concepts on thick filament regulation were deposited this week in bioRxiv, one of the contributions having had access to our coordinates. We hope that our data at high resolution will be helpful for all readers that appreciate that high resolution information is required to build accurate atomic models and discuss implications for sarcomere regulation and the effects of cardiomyopathy mutations on heart muscle function.

19.
Biomolecules ; 12(4)2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35454100

RESUMEN

Ménière's disease is a chronic illness characterized by intermittent episodes of vertigo associated with fluctuating sensorineural hearing loss, tinnitus and aural pressure. This pathology strongly correlates with a dilatation of the fluid compartment of the endolymph, so-called hydrops. Dexamethasone is one of the therapeutic approaches recommended when conventional antivertigo treatments have failed. Several mechanisms of actions have been hypothesized for the mode of action of dexamethasone, such as the anti-inflammatory effect or as a regulator of inner ear water homeostasis. However, none of them have been experimentally confirmed so far. Aquaporins (AQPs) are transmembrane water channels and are hence central in the regulation of transcellular water fluxes. In the present study, we investigated the hypothesis that dexamethasone could impact water fluxes in the inner ear by targeting AQP2. We addressed this question through molecular dynamics simulations approaches and managed to demonstrate a direct interaction between AQP2 and dexamethasone and its significant impact on the channel water permeability. Through compartmentalization of sodium and potassium ions, a significant effect of Na+ upon AQP2 water permeability was highlighted as well. The molecular mechanisms involved in dexamethasone binding and in its regulatory action upon AQP2 function are described.


Asunto(s)
Oído Interno , Enfermedad de Meniere , Acuaporina 2 , Dexametasona/farmacología , Dexametasona/uso terapéutico , Humanos , Enfermedad de Meniere/tratamiento farmacológico , Enfermedad de Meniere/metabolismo , Agua/metabolismo
20.
Cancer Res ; 82(9): 1818-1831, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35259248

RESUMEN

T-cell prolymphocytic leukemia (T-PLL) is a chemotherapy-refractory T-cell malignancy with limited therapeutic options and a poor prognosis. Current disease concepts implicate TCL1A oncogene-mediated enhanced T-cell receptor (TCR) signaling and aberrant DNA repair as central perturbed pathways. We discovered that recurrent gains on chromosome 8q more frequently involve the argonaute RISC catalytic component 2 (AGO2) gene than the adjacent MYC locus as the affected minimally amplified genomic region. AGO2 has been understood as a protumorigenic key regulator of miRNA (miR) processing. Here, in primary tumor material and cell line models, AGO2 overrepresentation associated (i) with higher disease burden, (ii) with enhanced in vitro viability and growth of leukemic T cells, and (iii) with miR-omes and transcriptomes that highlight altered survival signaling, abrogated cell-cycle control, and defective DNA damage responses. However, AGO2 elicited also immediate, rather non-RNA-mediated, effects in leukemic T cells. Systems of genetically modulated AGO2 revealed that it enhances TCR signaling, particularly at the level of ZAP70, PLCγ1, and LAT kinase phosphoactivation. In global mass spectrometric analyses, AGO2 interacted with a unique set of partners in a TCR-stimulated context, including the TCR kinases LCK and ZAP70, forming membranous protein complexes. Models of their three-dimensional structure also suggested that AGO2 undergoes posttranscriptional modifications by ZAP70. This novel TCR-associated noncanonical function of AGO2 represents, in addition to TCL1A-mediated TCR signal augmentation, another enhancer mechanism of this important deregulated growth pathway in T-PLL. These findings further emphasize TCR signaling intermediates as candidates for therapeutic targeting. SIGNIFICANCE: The identification of AGO2-mediated activation of oncogenic T cells through signal amplifying protein-protein interactions advances the understanding of leukemogenic AGO2 functions and underlines the role of aberrant TCR signaling in T-PLL.


Asunto(s)
Leucemia Prolinfocítica de Células T , MicroARNs , Humanos , Leucemia Prolinfocítica de Células T/genética , Leucemia Prolinfocítica de Células T/patología , MicroARNs/genética , MicroARNs/metabolismo , Fosforilación , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal/genética , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA