Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 43(11): 2213-2222, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37732482

RESUMEN

BACKGROUND: Systemic inflammatory diseases, such as sepsis and severe COVID-19, provoke acute respiratory distress syndrome in which the pathological hyperpermeability of the microvasculature, induced by uncontrolled inflammatory stimulation, causes pulmonary edema. Identifying the inflammatory mediators that induce human lung microvascular endothelial cell barrier dysfunction is essential to find the best anti-inflammatory treatments for critically ill acute respiratory distress syndrome patients. METHODS: We have compared the responses of primary human lung microvascular endothelial cells to the main inflammatory mediators involved in cytokine storms induced by sepsis and SARS-CoV2 pulmonary infection and to sera from healthy donors and severely ill patients with sepsis. Endothelial barrier function was measured by electric cell-substrate impedance sensing, quantitative confocal microscopy, and Western blot. RESULTS: The human lung microvascular endothelial cell barrier was completely disrupted by IL (interleukin)-6 conjugated with soluble IL-6R (IL-6 receptor) and by IL-1ß (interleukin-1beta), moderately affected by TNF (tumor necrosis factor)-α and IFN (interferon)-γ and unaffected by other cytokines and chemokines, such as IL-6, IL-8, MCP (monocyte chemoattractant protein)-1 and MCP-3. The inhibition of IL-1 and IL-6R simultaneously, but not separately, significantly reduced endothelial hyperpermeability on exposing human lung microvascular endothelial cells to a cytokine storm consisting of 8 inflammatory mediators or to sera from patients with sepsis. Simultaneous inhibition of IL-1 and JAK (Janus kinase)-STAT (signal transducer and activator of transcription protein), a signaling node downstream IL-6 and IFN-γ, also prevented septic serum-induced endothelial barrier disruption. CONCLUSIONS: These findings strongly suggest a major role for both IL-6 trans-signaling and IL-1ß signaling in the pathological increase in permeability of the human lung microvasculature and reveal combinatorial strategies that enable the gradual control of pulmonary endothelial barrier function in response to a cytokine storm.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Sepsis , Humanos , Interleucina-6/metabolismo , Síndrome de Liberación de Citoquinas , Células Endoteliales/metabolismo , ARN Viral/metabolismo , Pulmón/metabolismo , Interferón gamma/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , COVID-19/metabolismo , Sepsis/metabolismo , Interleucina-1/metabolismo
2.
Infect Immun ; 91(2): e0001223, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36722977

RESUMEN

Colistin resistance is acquired by different lipopolysaccharide (LPS) modifications. We proposed to evaluate the of effect in vivo colistin resistance acquisition on the innate immune response. We used a pair of ST11 clone Klebsiella pneumoniae strains: an OXA-48, CTX-M-15 K. pneumoniae strain susceptible to colistin (CS-Kp) isolated from a urinary infection and its colistin-resistant variant (CR-Kp) from the same patient after prolonged treatment with colistin. No mutation of previously described genes for colistin resistance (pmrA, pmrB, mgrB, phoP/Q, arnA, arnC, arnT, ugdH, and crrAB) was found in the CR-Kp genome; however, LPS modifications were characterized by negative-ion matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. The strains were cocultured with human monocytes to determine their survival after phagocytosis and induction to apoptosis. Also, monocytes were stimulated with bacterial LPS to study cytokine and immune checkpoint production. The addition of 4-amino-4-deoxy-l-arabinose (Ara4N) to lipid A of CR-Kp accounted for the colistin resistance. CR-Kp survived significantly longer inside human monocytes after being phagocytosed than did the CS-Kp strain. In addition, LPS from CR-Kp induced both higher apoptosis in monocytes and higher levels of cytokine and immune checkpoint production than LPS from CS-Kp. Our data reveal a variable impact of colistin resistance on the innate immune system, depending on the responsible mechanism. Adding Ara4N to LPS in K. pneumoniae increases bacterial survival after phagocytosis and elicits a higher inflammatory response than its colistin-susceptible counterpart.


Asunto(s)
Colistina , Infecciones por Klebsiella , Humanos , Colistina/farmacología , Lipopolisacáridos/farmacología , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Inmunidad Innata , Klebsiella pneumoniae , Citocinas , Infecciones por Klebsiella/microbiología , Farmacorresistencia Bacteriana/genética , Pruebas de Sensibilidad Microbiana
3.
J Immunol ; 207(1): 162-174, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34183364

RESUMEN

According to a large number of reported cohorts, sepsis has been observed in nearly all deceased patients with COVID-19. We and others have described sepsis, among other pathologies, to be an endotoxin tolerance (ET)-related disease. In this study, we demonstrate that the culture of human blood cells from healthy volunteers in the presence of SARS-CoV-2 proteins induced ET hallmarks, including impairment of proinflammatory cytokine production, low MHC class II (HLA-DR) expression, poor T cell proliferation, and enhancing of both phagocytosis and tissue remodeling. Moreover, we report the presence of SARS-CoV-2 blood circulating proteins in patients with COVID-19 and how these levels correlate with an ET status, the viral RNA presence of SARS-CoV-2 in plasma, as well as with an increase in the proportion of patients with secondary infections.


Asunto(s)
COVID-19 , SARS-CoV-2 , Tolerancia a Endotoxinas , Genes MHC Clase II , Humanos , ARN Viral
4.
Cell Mol Life Sci ; 79(8): 396, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35789437

RESUMEN

In the course of atherogenesis, the spleen plays an important role in the regulation of extramedullary hematopoiesis, and in the control of circulating immune cells, which contributes to plaque progression. Here, we have investigated the role of splenic nucleotide-binding oligomerization domain 1 (NOD1) in the recruitment of circulating immune cells, as well as the involvement of this immune organ in extramedullary hematopoiesis in mice fed on a high-fat high-cholesterol diet (HFD). Under HFD conditions, the absence of NOD1 enhances the mobilization of immune cells, mainly neutrophils, from the bone marrow to the blood. To determine the effect of NOD1-dependent mobilization of immune cells under pro-atherogenic conditions, Apoe-/- and Apoe-/-Nod1-/- mice fed on HFD for 4 weeks were used. Splenic NOD1 from Apoe-/- mice was activated after feeding HFD as inferred by the phosphorylation of the NOD1 downstream targets RIPK2 and TAK1. Moreover, this activation was accompanied by the release of neutrophil extracellular traps (NETs), as determined by the increase in the expression of peptidyl arginine deiminase 4, and the identification of citrullinated histone H3 in this organ. This formation of NETs was significantly reduced in Apoe-/-Nod1-/- mice. Indeed, the presence of Ly6G+ cells and the lipidic content in the spleen of mice deficient in Apoe and Nod1 was reduced when compared to the Apoe-/- counterparts, which suggests that the mobilization and activation of circulating immune cells are altered in the absence of NOD1. Furthermore, confirming previous studies, Apoe-/-Nod1-/- mice showed a reduced atherogenic disease, and diminished recruitment of neutrophils in the spleen, compared to Apoe-/- mice. However, splenic artery ligation reduced the atherogenic burden in Apoe-/- mice an effect that, unexpectedly was lost in Apoe-/-Nod1-/- mice. Together, these results suggest that neutrophil accumulation and activity in the spleen are driven in part by NOD1 activation in mice fed on HFD, contributing in this way to regulating atherogenic progression.


Asunto(s)
Aterosclerosis , Trampas Extracelulares , Animales , Apolipoproteínas E/metabolismo , Aterosclerosis/metabolismo , Dieta Alta en Grasa/efectos adversos , Trampas Extracelulares/metabolismo , Ratones , Ratones Noqueados , Infiltración Neutrófila , Bazo/metabolismo
5.
Int J Mol Sci ; 24(7)2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37047205

RESUMEN

Garlic (Allium sativum) has historically been associated with antioxidant, immunomodulatory, and microbiocidal properties, mainly due to its richness in thiosulfates and sulfur-containing phytoconstituents. Sepsis patients could benefit from these properties because it involves both inflammatory and refractory processes. We evaluated the effects of thiosulfinate-enriched Allium sativum extract (TASE) on the immune response to bacterial lipopolysaccharide (LPS) by monocytes from healthy volunteers (HVs) and patients with sepsis. We also explored the TASE effects in HIF-1α, described as the key transcription factor leading to endotoxin tolerance in sepsis monocytes through IRAK-M expression. Our results showed TASE reduced the LPS-triggered reactive oxygen species (ROS) production in monocytes from both patients with sepsis and HVs. Moreover, this extract significantly reduced tumor necrosis factor (TNF)-α, interleukin-1ß, and interleukin-6 production in LPS-stimulated monocytes from HVs. However, TASE enhanced the inflammatory response in monocytes from patients with sepsis along with increased expression of human leukocyte antigen-DR. Curiously, these dual effects of TASE on immune response were also found when the HV cohort was divided into low- and high-LPS responders. Although TASE enhanced TNFα production in the LPS-low responders, it decreased the inflammatory response in the LPS-high responders. Furthermore, TASE decreased the HIF-1α pathway-associated genes IRAK-M, VEGFA and PD-L1 in sepsis cells, suggesting HIF-1α inhibition by TASE leads to higher cytokine production in these cells as a consequence of IRAK-M downregulation. The suppression of this pathway by TASE was confirmed in vitro with the prolyl hydroxylase inhibitor dimethyloxalylglycine. Our data revealed TASE's dual effect on monocyte response according to status/phenotype and suggested the HIF-1α suppression as the possible underlying mechanism.


Asunto(s)
Ajo , Sepsis , Humanos , Antioxidantes/farmacología , Ajo/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Monocitos/metabolismo , Sepsis/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
6.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36077075

RESUMEN

Human-adipose-derived mesenchymal stem cells (hADMSCs) are multipotent stem cells which have become of great interest in stem-cell therapy due to their less invasive isolation. However, they have limited migration and short lifespans. Therefore, understanding the mechanisms by which these cells could migrate is of critical importance for regenerative medicine. Methods: Looking for novel alternatives, herein, hADMSCs were isolated from adipose tissue and co-cultured with human monocytes ex vivo. Results: A new fused hybrid entity, a foam hybrid cell (FHC), which was CD90+CD14+, resulted from this co-culture and was observed to have enhanced motility, proliferation, immunomodulation properties, and maintained stemness features. Conclusions: Our study demonstrates the generation of a new hybrid cellular population that could provide migration advantages to MSCs, while at the same time maintaining stemness properties.


Asunto(s)
Células Madre Mesenquimatosas , Monocitos , Tejido Adiposo , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Humanos
7.
J Immunol ; 198(5): 2038-2046, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28115526

RESUMEN

Patients with acute ischemic stroke (AIS) suffer from infections associated with mortality. The relevance of the innate immune system, and monocytes in particular, has emerged as an important factor in the evolution of these infections. The study enrolled 14 patients with AIS, without previous treatment, and 10 healthy controls. In the present study, we show that monocytes from patients with AIS exhibit a refractory state or endotoxin tolerance. The patients were unable to orchestrate an inflammatory response against LPS and expressed three factors reported to control the evolution of human monocytes into a refractory state: IL-1R-associated kinase-M, NFkB2/p100, and hypoxia-inducible factor-1α. The levels of circulating mitochondrial DNA (mtDNA) in patients with AIS correlated with impaired inflammatory response of isolated monocytes. Interestingly, the patients could be classified into two groups: those who were infected and those who were not, according to circulating mtDNA levels. This finding was validated in an independent cohort of 23 patients with AIS. Additionally, monocytes from healthy controls, cultured in the presence of both sera from patients and mtDNA, reproduced a refractory state after endotoxin challenge. This effect was negated by either a TLR9 antagonist or DNase treatment. The present data further extend our understanding of endotoxin tolerance implications in AIS. A putative role of mtDNA as a new biomarker of stroke-associated infections, and thus a clinical target for preventing poststroke infection, has also been identified.


Asunto(s)
Biomarcadores/sangre , Células Sanguíneas/inmunología , ADN Mitocondrial/sangre , Infecciones/inmunología , Isquemia/inmunología , Monocitos/inmunología , Accidente Cerebrovascular/inmunología , Enfermedad Aguda , Anciano , Anciano de 80 o más Años , Células Cultivadas , Endotoxinas/inmunología , Femenino , Humanos , Tolerancia Inmunológica , Inmunidad Innata , Infecciones/etiología , Isquemia/complicaciones , Masculino , Persona de Mediana Edad , Accidente Cerebrovascular/complicaciones
8.
Respirology ; 24(7): 684-692, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30656807

RESUMEN

BACKGROUND AND OBJECTIVE: In obstructive sleep apnoea (OSA), intermittent hypoxia (IH) compromises immune surveillance through the upregulation of the programmed cell death-1 (PD-1) receptor and its ligand (PD-L1). Because the risk of OSA-related cancer depends on age, we assessed PD-L1/PD-1 expression in middle-aged and older patients with OSA as well as in a murine model. METHODS: PD-L1 expression was studied in 41 patients with severe OSA and 40 healthy volunteers (HV), divided into two groups (≤55 and >55 years of age). We used flow cytometry, quantitative PCR (qPCR) and ELISA to determine PD-L1 expression on monocytes and plasma PD-L1 protein levels. Moreover, we analysed PD-L1 expression on an in vivo IH model with old and young mice. RESULTS: In subjects up to 55 years of age, severe OSA increased PD-L1 surface protein and mRNA level expression on monocytes and soluble-PD-L1 protein concentration in plasma compared to HV. PD-L1 and hypoxia-induced factor (HIF)-1α expression correlated with age in HV, whereas in patients with OSA there was a negative relationship. In the mice exposed to IH, PD-L1 expression on F4/80+ splenocytes was also only increased in young animals. HIF-1α expression was significantly higher in patients with OSA than in HV in subjects up to 55 years of age, while PD-L1 expression in monocytes was related to HIF-1α expression in young patients with OSA. CONCLUSION: PD-L1 upregulation in patients with OSA as a consequence of HIF-1α activation occurs mainly in young patients. In older patients with OSA, upregulation was not detected, possibly due to impaired oxygen sensitivity.


Asunto(s)
Antígeno B7-H1/sangre , Subunidad alfa del Factor 1 Inducible por Hipoxia/sangre , Hipoxia/sangre , Apnea Obstructiva del Sueño/sangre , Adulto , Factores de Edad , Anciano , Animales , Antígeno B7-H1/genética , Estudios de Casos y Controles , Femenino , Humanos , Hipoxia/etiología , Hipoxia/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Masculino , Ratones , Persona de Mediana Edad , Monocitos/metabolismo , ARN Mensajero , Apnea Obstructiva del Sueño/complicaciones , Apnea Obstructiva del Sueño/fisiopatología , Activación Transcripcional , Regulación hacia Arriba
9.
J Infect Dis ; 217(3): 393-404, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28973671

RESUMEN

Sepsis, among other pathologies, is an endotoxin tolerance (ET)-related disease. On admission, we classified 48 patients with sepsis into 3 subgroups according to the ex vivo response to lipopolysaccharide. This response correlates with the Acute Physiology and Chronic Health Evaluation (APACHE) II score and the ET degree. Moreover, the ET-related classification determines the outcome of these patients. Programmed cell death-ligand 1 (PD-L1) expression on septic monocytes is also linked with ET status. In addition to the regulation of cytokine production, one of the hallmarks of ET that significantly affects patients with sepsis is T-cell proliferation impairment or a poor switch to the adaptive response. PD-L1/programmed cell death-1 (PD-1) blocking and knockdown assays on tolerant monocytes from both patients with sepsis and the in vitro model reverted the impaired adaptive response. Mechanistically, the transcription factor hypoxia-inducible factor-1α (HIF1α) has been translocated into the nucleus and drives PD-L1 expression during ET in human monocytes. This fact, together with patient classification according to the ex vivo lipopolysaccharide response, opens an interesting field of study and potential personalized clinical applications, not only for sepsis but also for all ET-associated pathologies.


Asunto(s)
Inmunidad Adaptativa , Antígeno B7-H1/biosíntesis , Endotoxinas/inmunología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Tolerancia Inmunológica , Sepsis/patología , APACHE , Adulto , Anciano , Anciano de 80 o más Años , Células Cultivadas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Monocitos/inmunología
10.
BMC Cancer ; 18(1): 945, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30285662

RESUMEN

BACKGROUND: The analysis of tumour-infiltrating immune cells within patients' tumour samples in colorectal cancer (CRC) has become an independent predictor of patient survival. The tumour microenvironment and the immune checkpoints, such as PD-L1/PD-1, are relevant to the prognoses and also appear to be relevant for further CRC therapies. METHODS: We analysed the presence and features of the infiltrated monocyte/macrophage and lymphocyte populations in both tumour and peritumour samples from patients with CRC (n = 15). RESULTS: We detected a large number of CD14+ monocytes/macrophages with an alternative phenotype (CD64+CD163+) and CD4+ lymphocytes that infiltrated the tumour, but not the peritumour area. The monocytes/macrophages expressed PD-L1, whereas the lymphocytes were PD-1+; however, we did not find high PD-L1 levels in the tumour cells. Coculture of circulating naïve human monocytes/macrophages and lymphocytes with tumour cells from patients with proficient mismatch repair CRC induced both an alternative phenotype with higher expression of PD-L1 in CD14+ cells and the T-cell exhaustion phenomenon. The addition of an α-PD-1 antibody restored lymphocyte proliferation. CONCLUSION: These results emphasise the interesting nature of immune checkpoint shifting therapies, which have potential clinical applications in the context of colorectal cancer.


Asunto(s)
Antígeno B7-H1/metabolismo , Biomarcadores de Tumor , Neoplasias Colorrectales/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Transducción de Señal , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , Femenino , Humanos , Activación de Linfocitos/inmunología , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Masculino , Inestabilidad de Microsatélites , Persona de Mediana Edad , Metástasis de la Neoplasia , Estadificación de Neoplasias , Células Madre Neoplásicas/inmunología , Células Madre Neoplásicas/metabolismo , Fenotipo , Unión Proteica , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
11.
Mediators Inflamm ; 2018: 7373921, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29997451

RESUMEN

Obstructive sleep apnea (OSA) is a syndrome characterized by repeated pauses in breathing induced by a partial or complete collapse of the upper airways during sleep. Intermittent hypoxia (IH), a hallmark characteristic of OSA, has been proposed to be a major determinant of cancer development, and patients with OSA are at a higher risk of tumors. Both OSA and healthy monocytes have been found to show enhanced HIF1α expression under IH. Moreover, these cells under IH polarize toward a tumor-promoting phenotype in a HIF1α-dependent manner and influence tumor growth via vascular endothelial growth factor (VEGF). Monocytes from patients with OSA increased the tumor-induced microenvironment and exhibited an impaired cytotoxicity in a 3D tumor in vitro model as a result of the increased HIF1α secretion. Adequate oxygen restoration both in vivo (under continuous positive airway pressure treatment, CPAP) and in vitro leads the monocytes to revert the tumor-promoting phenotype, demonstrating the plasticity of the innate immune system and the oxygen recovery relevance in this context.


Asunto(s)
Leucocitos Mononucleares/metabolismo , Apnea Obstructiva del Sueño/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Adulto , Anciano , Biomarcadores/metabolismo , Supervivencia Celular/fisiología , Células Cultivadas , Femenino , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Persona de Mediana Edad , Oxígeno/metabolismo , Estudios Prospectivos , Esferoides Celulares/metabolismo
12.
Eur Respir J ; 50(4)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29051270

RESUMEN

Obstructive sleep apnoea (OSA) is associated with higher cancer incidence, tumour aggressiveness and cancer mortality, as well as greater severity of infections, which have been attributed to an immune deregulation. We studied the expression of programmed cell death (PD)-1 receptor and its ligand (PD-L1) on immune cells from patients with OSA, and its consequences on immune-suppressing activity. We report that PD-L1 was overexpressed on monocytes and PD-1 was overexpressed on CD8+ T-cells in a severity-dependent manner. PD-L1 and PD-1 overexpression were induced in both the human in vitro and murine models of intermittent hypoxia, as well as by hypoxia-inducible factor-1α transfection. PD-L1/PD-1 crosstalk suppressed T-cell proliferation and activation of autologous T-lymphocytes and impaired the cytotoxic activity of CD8+ T-cells. In addition, monocytes from patients with OSA exhibited high levels of retinoic acid related orphan receptor, which might explain the differentiation of myeloid-derived suppressor cells. Intermittent hypoxia upregulated the PD-L1/PD-1 crosstalk in patients with OSA, resulting in a reduction in CD8+ T-cell activation and cytotoxicity, providing biological plausibility to the increased incidence and aggressiveness of cancer and the higher risk of infections described in these patients.


Asunto(s)
Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos/fisiología , Monocitos/fisiología , Receptor de Muerte Celular Programada 1/metabolismo , Apnea Obstructiva del Sueño/metabolismo , Adulto , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Transducción de Señal , Apnea Obstructiva del Sueño/diagnóstico , Regulación hacia Arriba
13.
Eur Respir J ; 49(6)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28619958

RESUMEN

Obstructive sleep apnoea (OSA) is associated with cancer incidence and mortality. The contribution of the immune system appears to be crucial; however, the potential role of monocytes and natural killer (NK) cells remains unclear.Quantitative reverse transcriptase PCR, flow cytometry and in vitro assays were used to analyse the phenotype and immune response activity in 92 patients with OSA (60 recently diagnosed untreated patients and 32 patients after 6 months of treatment with continuous positive airway pressure (CPAP)) and 29 healthy volunteers (HV).We determined that monocytes in patients with OSA exhibit an immunosuppressive phenotype, including surface expression of glycoprotein-A repetitions predominant protein (GARP) and transforming growth factor-ß (TGF-ß), in contrast to those from the HV and CPAP groups. High levels of TGF-ß were detected in OSA sera. TGF-ß release by GARP+ monocytes impaired NK cytotoxicity and maturation. This altered phenotype correlated with the hypoxic severity clinical score (CT90). Reoxygenation eventually restored the altered phenotypes and cytotoxicity.This study demonstrates that GARP+ monocytes from untreated patients with OSA have an NK-suppressing role through their release of TGF-ß. Our findings show that monocyte plasticity immunomodulates NK activity in this pathology, suggesting a potential role in cancer incidence.


Asunto(s)
Presión de las Vías Aéreas Positiva Contínua/métodos , Hipoxia , Células Asesinas Naturales/fisiología , Proteínas de la Membrana/metabolismo , Monocitos/fisiología , Apnea Obstructiva del Sueño , Factor de Crecimiento Transformador beta/metabolismo , Citotoxicidad Inmunológica , Femenino , Humanos , Hipoxia/etiología , Hipoxia/metabolismo , Hipoxia/terapia , Masculino , Persona de Mediana Edad , Apnea Obstructiva del Sueño/complicaciones , Apnea Obstructiva del Sueño/diagnóstico , Apnea Obstructiva del Sueño/inmunología , Apnea Obstructiva del Sueño/terapia , Resultado del Tratamiento , Escape del Tumor
14.
Microbiol Spectr ; 12(2): e0276223, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38230939

RESUMEN

Serratia spp. is a well-recognized pathogen in neonates; however, limited data are available in adults. We studied microbiological and clinical characteristics of Serratia spp. causing bloodstream infections (BSI) in our institution (January 2005-July 2020). Overall, 141 BSI episodes affecting 139 patients were identified and medical records reviewed. Antimicrobial susceptibility was recovered from our informatics system and 118 isolates from 116 patients were available for further microbiological studies. Whole genome sequencing (WGS) was completed in 107 isolates. Incidence of Serratia BSI was 0.3/1000 overall admissions (range 0.12-0.60), with maximum prevalence (27 episodes, 19.1%) during 2017-2018. Relevant patients' clinical characteristics were 71.9% ≥60 years (n = 100), with high comorbidity rates (49%, ≥2), 23 (74.2%) of them died within 1 month of the BSI episode. WGS identified all isolates as Serratia marcescens when Kraken bioinformatics taxonomic tool was used despite some which were identified as Serratia nematodiphila (32/118) or Serratia ureilytica (5/118) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Nevertheless, when using MASH distance, Serratia nevei (63/107), S. ureilytica (38/107), and S. marcescens (6/107) were assigned. Carbapenemase (blaVIM-1) and extended-spectrum ß-lactases (ESBL) (blaSHV-12) genes were found in seven and three isolates, respectively, one of them expressing both genes. The worldwide-disseminated IncL/M scaffold plasmid was identified in six VIM producers. Four genotypes were established based on their virulence factors and resistome. Serratia spp. emerged as a relevant nosocomial pathogen causing BSI in elderly patients in our hospital, particularly in recent years with a remarkable increase in antibiotic resistance. ESBL and carbapenemases production related to plasmid dissemination are particularly noteworthy.IMPORTANCESerratia spp. is the third most frequent pathogen involved in outbreaks at neonatal facilities and is primarily associated with bacteremia episodes. In this study, we characterized all causing bloodstream infection (BSI) in patients admitted to our hospital during a 16-year period (2005-2020). Despite having no neonatal intensive care unit in our hospital, this study revealed that Serratia spp. is a relevant pathogen causing BSI in elderly patients with high comorbidity rates. A significant increase of antimicrobial resistance was detected over time, particularly in 2020 and coinciding with the coronavirus disease (COVID-19) pandemic and nosocomial spread of multidrug-resistant Serratia spp. isolates. extended-spectrum ß-lactases and carbapenemases genes associated with plasmid dissemination, typically detected in other Enterobacterales species, were also identified, reinforcing the role of Serratia spp. in the antimicrobial resistance landscape. Additionally, this work highlights the need to reclassify the species of Serratia, since discrepancies were observed in the identification when using different tools.


Asunto(s)
Infección Hospitalaria , Sepsis , Recién Nacido , Adulto , Humanos , Anciano , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Serratia , beta-Lactamasas/genética , Sepsis/microbiología , Serratia marcescens , Infección Hospitalaria/microbiología , Pruebas de Sensibilidad Microbiana , Lactasa
15.
Heliyon ; 9(10): e20854, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37867899

RESUMEN

Acute myocardial infarction (AMI) is associated with systemic inflammatory processes and metabolic alterations. Microbial-derived metabolites, such as short-chain fatty acids and trimethylamine N-oxide (TMAO), have emerged in recent years as key players in the modulation of inflammation, with potential implications for cardiovascular diseases. We performed a prospective observational study that monitored the serological concentration of bacterial metabolites in 45 young patients (<55 years) without cardiovascular risk factors but with AMI, at hospital admission and at 3 months of follow-up, and compared them with a control group. TMAO and acetate levels were significantly higher in AMI, whereas butyrate and propionate were significantly lower. The acetate/propionate ratio showed the most discrimination between AMI and controls by receiver operating characteristic analysis (area under the curve 0.769, P < 0.0001). A multivariate logistic regression model revealed that this ratio was independently associated with AMI. Short-chain fatty acid concentrations, but not TMAO, exhibited significant correlations with inflammatory and coagulation parameters. Three months after the acute AMI event, all metabolite levels returned to those observed in healthy controls except butyrate. In conclusion, our study reveals disturbances of the serological concentration of microbiota-derived metabolites in AMI that are also related to inflammatory and coagulation parameters. These findings highlight an interesting field of study in the potential role of microbial metabolites from gut in cardiovascular disease.

16.
Mol Ther Nucleic Acids ; 32: 247-262, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37090418

RESUMEN

Circulating extracellular vesicles (EVs) are proposed to participate in enhancing pathways of recovery after stroke through paracrine signaling. To verify this hypothesis in a proof-of-concept study, blood-derived allogenic EVs from rats and xenogenic EVs from humans who experienced spontaneous good recovery after an intracerebral hemorrhage (ICH) were administered intravenously to rats at 24 h after a subcortical ICH. At 28 days, both treatments improved the motor function assessment scales score, showed greater fiber preservation in the perilesional zone (diffusion tensor-fractional anisotropy MRI), increased immunofluorescence markers of myelin (MOG), and decreased astrocyte markers (GFAP) compared with controls. Comparison of the protein cargo of circulating EVs at 28 days from animals with good vs. poor recovery showed down-expression of immune system activation pathways (CO4, KLKB1, PROC, FA9, and C1QA) and of restorative processes such as axon guidance (RAC1), myelination (MBP), and synaptic vesicle trafficking (SYN1), which is in line with better tissue preservation. Up-expression of PCSK9 (neuron differentiation) in xenogenic EVs-treated animals suggests enhancement of repair pathways. In conclusion, the administration of blood-derived EVs improved recovery after ICH. These findings open a new and promising opportunity for further development of restorative therapies to improve the outcomes after an ICH.

17.
EBioMedicine ; 97: 104841, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37890368

RESUMEN

BACKGROUND: Sepsis is associated with T-cell exhaustion, which significantly reduces patient outcomes. Therefore, targeting of immune checkpoints (ICs) is deemed necessary for effective sepsis management. Here, we evaluated the role of SIGLEC5 as an IC ligand and explored its potential as a biomarker for sepsis. METHODS: In vitro and in vivo assays were conducted to both analyse SIGLEC5's role as an IC ligand, as well as assess its impact on survival in sepsis. A multicentre prospective cohort study was conducted to evaluate the plasmatic soluble SIGLEC5 (sSIGLEC5) as a mortality predictor in the first 60 days after admission in sepsis patients. Recruitment included sepsis patients (n = 346), controls with systemic inflammatory response syndrome (n = 80), aneurism (n = 11), stroke (n = 16), and healthy volunteers (HVs, n = 100). FINDINGS: SIGLEC5 expression on monocytes was increased by HIF1α and was higher in septic patients than in healthy volunteers after ex vivo LPS challenge. Furthermore, SIGLEC5-PSGL1 interaction inhibited CD8+ T-cell proliferation. Administration of sSIGLEC5r (0.8 mg/kg) had adverse effects in mouse endotoxemia models. Additionally, plasma sSIGLEC5 levels of septic patients were higher than HVs and ROC analysis revealed it as a mortality marker with an AUC of 0.713 (95% CI, 0.656-0.769; p < 0.0001). Kaplan-Meier survival curve showed a significant decrease in survival above the calculated cut-off (HR of 3.418, 95% CI, 2.380-4.907, p < 0.0001 by log-rank test) estimated by Youden Index (523.6 ng/mL). INTERPRETATION: SIGLEC5 displays the hallmarks of an IC ligand, and plasma levels of sSIGLEC5 have been linked with increased mortality in septic patients. FUNDING: Instituto de Salud Carlos III (ISCIII) and "Fondos FEDER" to ELC (PIE15/00065, PI18/00148, PI14/01234, PI21/00869), CDF (PI21/01178), RLR (FI19/00334) and JAO (CD21/00059).


Asunto(s)
Sepsis , Animales , Humanos , Ratones , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica , Linfocitos T CD8-positivos/metabolismo , Lectinas , Ligandos , Pronóstico , Estudios Prospectivos , Curva ROC , Sepsis/etiología
18.
Front Immunol ; 14: 1136029, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153580

RESUMEN

Introduction: COVID-19 vaccines based on mRNA have represented a revolution in the biomedical research field. The initial two-dose vaccination schedule generates potent humoral and cellular responses, with a massive protective effect against severe COVID-19 and death. Months after this vaccination, levels of antibodies against SARS-CoV-2 waned, and this promoted the recommendation of a third vaccination dose. Methods: We have performed an integral and longitudinal study of the immunological responses triggered by the booster mRNA-1273 vaccination, in a cohort of health workers previously vaccinated with two doses of the BNT162b2 vaccine at University Hospital La Paz located in Madrid, Spain. Circulating humoral responses and SARS-CoV-2-specific cellular reactions, after ex vivo restimulation of both T and B cells (cytokines production, proliferation, class switching), have been analyzed. Importantly, all along these studies, the analyses have been performed comparing naïve and subjects recovered from COVID-19, addressing the influence of a previous infection by SARS-CoV-2. Furthermore, as the injection of the third vaccination dose was contemporary to the rise of the Omicron BA.1 variant of concern, T- and B-cell-mediated cellular responses have been comparatively analyzed in response to this variant. Results: All these analyses indicated that differential responses to vaccination due to a previous SARS-CoV-2 infection were balanced following the boost. The increase in circulating humoral responses due to this booster dropped after 6 months, whereas T-cell-mediated responses were more stable along the time. Finally, all the analyzed immunological features were dampened in response to the Omicron variant of concern, particularly late after the booster vaccination. Conclusion: This work represents a follow-up longitudinal study for almost 1.5 years, analyzing in an integral manner the immunological responses triggered by the prime-boost mRNA-based vaccination schedule against COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevención & control , Vacuna nCoV-2019 mRNA-1273 , Vacuna BNT162 , Vacunas contra la COVID-19 , Estudios Longitudinales , Vacunación
19.
Biomed Pharmacother ; 148: 112769, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35247718

RESUMEN

The bioavailability and regulation of iron is essential for central biological functions in mammals. The role of this element in ferroptosis and the dysregulation of its metabolism contribute to diseases, ranging from anemia to infections, alterations in the immune system, inflammation and atherosclerosis. In this sense, monocytes and macrophages modulate iron metabolism and splenic function, while at the same time they can worsen the atherosclerotic process in pathological conditions. Since the nucleotide-binding oligomerization domain 1 (NOD1) has been linked to numerous disorders, including inflammatory and cardiovascular diseases, we investigated its role in iron homeostasis. The iron content was measured in various tissues of Apoe-/- and Apoe-/-Nod1-/- mice fed a high-fat diet (HFD) for 4 weeks, under normal or reduced splenic function after ligation of the splenic artery. In the absence of NOD1 the iron levels decreased in spleen, heart and liver regardless the splenic function. This iron decrease was accompanied by an increase in the recruitment of F4/80+-macrophages in the spleen through a CXCR2-dependent signaling, as deduced by the reduced recruitment after administration of a CXCR2 inhibitor. CXCR2 mediates monocyte/macrophage chemotaxis to areas of inflammation and accumulation of leukocytes in the atherosclerotic plaque. Moreover, in the absence of NOD1, inhibition of CXCR2 enhanced atheroma progression. NOD1 activation increased the levels of GPX4 and other iron and ferroptosis regulatory proteins in macrophages. Our findings highlight the preeminent role of NOD1 in iron homeostasis and ferroptosis. These results suggest promising avenues of investigation for the diagnosis and treatment of iron-related diseases directed by NOD1.


Asunto(s)
Aterosclerosis/patología , Ferroptosis/fisiología , Macrófagos/patología , Proteína Adaptadora de Señalización NOD1/metabolismo , Bazo/patología , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Quimiotaxis/fisiología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Hierro/metabolismo , Ratones , Ratones Endogámicos C57BL , Monocitos/metabolismo , Distribución Aleatoria , Receptores de Interleucina-8B/metabolismo
20.
Biomedicines ; 10(5)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35625783

RESUMEN

Lung cancer (LC) continues to be the leading cause of cancer-related deaths in both men and women worldwide. After complete tumour resection, around half of the patients suffer from disease relapse, emphasising the critical need for robust relapse predictors in this disease. In search of such biomarkers, 83 patients with non-microcytic lung cancer and 67 healthy volunteers were studied. Pre-operative levels of sSIGLEC5 along with other soluble immune-checkpoints were measured and correlated with their clinical outcome. Soluble SIGLEC5 (sSIGLEC5) levels were higher in plasma from patients with LC compared with healthy volunteers. Looking into those patients who suffered relapse, sSIGLEC5 and sLAG3 were found to be strong relapse predictors. Following a binary logistic regression model, a sSIGLEC5 + sLAG3 score was established for disease relapse prediction (area under the curve 0.8803, 95% confidence intervals 0.7955−0.9652, cut-off > 2.782) in these patients. Based on score cut-off, a Kaplan−Meier analysis showed that patients with high sSIGLEC5 + sLAG3 score had significantly shorter relapse-free survival (p ≤ 0.0001) than those with low sSIGLEC5 + sLAG3 score.Our study suggests that pre-operative sSIGLEC5 + sLAG3 score is a robust relapse predictor in LC patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA