Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 97(11): e0096323, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37846984

RESUMEN

IMPORTANCE: Currently licensed dengue vaccines do not induce long-term protection in children without previous exposure to dengue viruses in nature. These vaccines are based on selected attenuated strains of the four dengue serotypes and employed in combination for two or three consecutive doses. In our search for a better dengue vaccine candidate, live attenuated strains were followed by non-infectious virus-like particles or the plasmids that generate these particles upon injection into the body. This heterologous prime-boost immunization induced elevated levels of virus-specific antibodies and helped to prevent dengue virus infection in a high proportion of vaccinated macaques. In macaques that remained susceptible to dengue virus, distinct mechanisms were found to account for the immunization failures, providing a better understanding of vaccine actions. Additional studies in humans in the future may help to establish whether this combination approach represents a more effective means of preventing dengue by vaccination.


Asunto(s)
Vacunas contra el Dengue , Virus del Dengue , Dengue , Vacunas de Partículas Similares a Virus , Animales , Humanos , Anticuerpos Antivirales , Vacunas contra el Dengue/administración & dosificación , Macaca fascicularis , Inmunización Secundaria , Vacunas de Partículas Similares a Virus/administración & dosificación
2.
Clin Infect Dis ; 72(10): e586-e593, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33462580

RESUMEN

BACKGROUND: Dengue is the most significant mosquito-borne viral disease; there are no specific therapeutics. The antiparasitic drug ivermectin efficiently inhibits the replication of all 4 dengue virus serotypes in vitro. METHODS: We conducted 2 consecutive randomized, double-blind, placebo-controlled trials in adult dengue patients to evaluate safety and virological and clinical efficacies of ivermectin. After a phase 2 trial with 2 or 3 days of 1 daily dose of 400 µg/kg ivermectin, we continued with a phase 3, placebo-controlled trial with 3 days of 400 µg/kg ivermectin. RESULTS: The phase 2 trial showed a trend in reduction of plasma nonstructural protein 1 (NS1) clearance time in the 3-day ivermectin group compared with placebo. Combining phase 2 and 3 trials, 203 patients were included in the intention to treat analysis (100 and 103 patients receiving ivermectin and placebo, respectively). Dengue hemorrhagic fever occurred in 24 (24.0%) of ivermectin-treated patients and 32 (31.1%) patients receiving placebo (P = .260). The median (95% confidence interval [CI]) clearance time of NS1 antigenemia was shorter in the ivermectin group (71.5 [95% CI 59.9-84.0] hours vs 95.8 [95% CI 83.9-120.0] hours, P = .014). At discharge, 72.0% and 47.6% of patients in the ivermectin and placebo groups, respectively had undetectable plasma NS1 (P = .001). There were no differences in the viremia clearance time and incidence of adverse events between the 2 groups. CONCLUSIONS: A 3-day 1 daily dose of 400 µg/kg oral ivermectin was safe and accelerated NS1 antigenemia clearance in dengue patients. However, clinical efficacy of ivermectin was not observed at this dosage regimen.


Asunto(s)
Dengue , Ivermectina , Adulto , Animales , Antiparasitarios/uso terapéutico , Dengue/tratamiento farmacológico , Método Doble Ciego , Humanos , Ivermectina/uso terapéutico , Proteínas no Estructurales Virales , Viremia
3.
J Gen Virol ; 102(8)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34410905

RESUMEN

The capsid protein (C) of dengue virus is required for viral infectivity as it packages viral RNA genome into infectious particles. C exists as a homodimer that forms via hydrophobic interactions between the α2 and α4 helices of monomers. To identify C region(s) important for virus particle production, a complementation system was employed in which single-round infectious particles are generated by trans-encapsidation of a viral C-deleted genome by recombinant C expressed in mosquito cells. Mutants harbouring a complete α3 deletion, or a dual Ile65-/Trp69-to-Ala substitution in the α3 helix, exhibited reduced production of infectious virus. Unexpectedly, higher proportions of oligomeric C were detected in cells expressing both mutated forms as compared with the wild-type counterpart, indicating that the α3 helix, through its internal hydrophobic residues, may down-modulate oligomerization of C during particle formation. Compared with wild-type C, the double Ile65-/Trp69 to Ala mutations appeared to hamper viral infectivity but not C and genomic RNA incorporation into the pseudo-infectious virus particles, suggesting that increased C oligomerization may impair DENV replication at the cell entry step.


Asunto(s)
Proteínas de la Cápside , Cápside/metabolismo , Virus del Dengue/metabolismo , Dengue/virología , Aedes , Secuencia de Aminoácidos , Animales , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Chlorocebus aethiops , Humanos , Células Vero , Ensamble de Virus , Replicación Viral
4.
J Gen Virol ; 101(1): 59-72, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31682220

RESUMEN

Dengue virus assembly involves the encapsidation of genomic RNA by the capsid protein (C) and the acquisition of an envelope comprising the premembrane (prM) and envelope (E) glycoproteins. This rapid process, lacking in detectable nucleocapsid intermediates, may impose authentic C-prM-E arrangement as a prerequisite for efficient particle assembly. A mosquito cell-based complementation system was employed in this study to investigate the possibility that expression of the three structural proteins in trans allows the efficient production of a partially C-deleted dengue virus as compared to the presence of C alone. Following the transfection of ΔC56-capped RNA transcripts into C6/36 cells transiently expressing C or CprME, the production of the single-cycle virus was comparable. Subsequent propagation in the stable CprME-expressing clone, however, supported virus adaptation leading to acquisition of the L29P and S101F (PF) dual mutations in the C protein. The triple mutant, ΔC56(PF), exhibited enhanced levels of virus replication, specific infectivity and frequent increases of intracellular C dimer, as compared with ΔC56 in the CprME-clone. The PF mutations were associated with the accumulation of truncated CprM in ΔC56(PF)-infected cells, and uncleaved CprM as well as reduced intracellular C-dimer when the dual mutations were introduced into the wild-type dengue virus genetic background. These results indicate that the PF mutations may exert a replication-enhancing effect for the triple mutant virus by relieving the interference of trans-complementing structural proteins during viral assembly and suggest that the C-prM-E arrangement may be advantageous for pseudoinfectious virus production.


Asunto(s)
Virus del Dengue/genética , Nucleocápside/genética , Proteínas del Envoltorio Viral/genética , Proteínas no Estructurales Virales/genética , Ensamble de Virus/genética , Secuencia de Aminoácidos , Animales , Proteínas de la Cápside/genética , Línea Celular , Chlorocebus aethiops , Culicidae/virología , Dengue/virología , ARN Viral/genética , Células Vero , Replicación Viral/genética
5.
J Immunol ; 197(10): 4053-4065, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27798151

RESUMEN

Flavivirus nonstructural protein 1 (NS1) is a unique secreted nonstructural glycoprotein. Although it is absent from the flavivirus virion, intracellular and extracellular forms of NS1 have essential roles in viral replication and the pathogenesis of infection. The fate of NS1 in insect cells has been more controversial, with some reports suggesting it is exclusively cell associated. In this study, we confirm NS1 secretion from cells of insect origin and characterize its physical, biochemical, and functional properties in the context of dengue virus (DENV) infection. Unlike mammalian cell-derived NS1, which displays both high mannose and complex type N-linked glycans, soluble NS1 secreted from DENV-infected insect cells contains only high mannose glycans. Insect cell-derived secreted NS1 also has different physical properties, including smaller and more heterogeneous sizes and the formation of less stable NS1 hexamers. Both mammalian and insect cell-derived NS1 bind to complement proteins C1s, C4, and C4-binding protein, as well as to a novel partner, mannose-binding lectin. Binding of NS1 to MBL protects DENV against mannose-binding lectin-mediated neutralization by the lectin pathway of complement activation. As we detected secreted NS1 and DENV together in the saliva of infected Aedes aegypti mosquitoes, these findings suggest a mechanism of viral immune evasion at the very earliest phase of infection.


Asunto(s)
Lectina de Unión a Manosa de la Vía del Complemento , Virus del Dengue/inmunología , Evasión Inmune , Lectina de Unión a Manosa/inmunología , Lectina de Unión a Manosa/metabolismo , Proteínas no Estructurales Virales/metabolismo , Aedes/virología , Animales , Línea Celular , Activación de Complemento , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Virus del Dengue/patogenicidad , Humanos , Unión Proteica , Saliva/virología , Porcinos , Proteínas no Estructurales Virales/química
6.
J Virol ; 89(3): 1587-607, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25410854

RESUMEN

UNLABELLED: Shedding of microparticles (MPs) is a consequence of apoptotic cell death and cellular activation. Low levels of circulating MPs in blood help maintain homeostasis, whereas increased MP generation is linked to many pathological conditions. Herein, we investigated the role of MPs in dengue virus (DENV) infection. Infection of various susceptible cells by DENV led to apoptotic death and MP release. These MPs harbored a viral envelope protein and a nonstructural protein 1 (NS1) on their surfaces. Ex vivo analysis of clinical specimens from patients with infections of different degrees of severity at multiple time points revealed that MPs generated from erythrocytes and platelets are two major MP populations in the circulation of DENV-infected patients. Elevated levels of red blood cell-derived MPs (RMPs) directly correlated with DENV disease severity, whereas a significant decrease in platelet-derived MPs was associated with a bleeding tendency. Removal by mononuclear cells of complement-opsonized NS1-anti-NS1 immune complexes bound to erythrocytes via complement receptor type 1 triggered MP shedding in vitro, a process that could explain the increased levels of RMPs in severe dengue. These findings point to the multiple roles of MPs in dengue pathogenesis. They offer a potential novel biomarker candidate capable of differentiating dengue fever from the more serious dengue hemorrhagic fever. IMPORTANCE: Dengue is the most important mosquito-transmitted viral disease in the world. No vaccines or specific treatments are available. Rapid diagnosis and immediate treatment are the keys to achieve a positive outcome. Dengue virus (DENV) infection, like some other medical conditions, changes the level and composition of microparticles (MPs), tiny bag-like structures which are normally present at low levels in the blood of healthy individuals. This study investigated how MPs in culture and patients' blood are changed in response to DENV infection. Infection of cells led to programmed cell death and MP release. In patients' blood, the majority of MPs originated from red blood cells and platelets. Decreased platelet-derived MPs were associated with a bleeding tendency, while increased levels of red blood cell-derived MPs (RMPs) correlated with more severe disease. Importantly, the level of RMPs during the early acute phase could serve as a biomarker to identify patients with potentially severe disease who require immediate care.


Asunto(s)
Biomarcadores/sangre , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/metabolismo , Dengue/patología , Adulto , Animales , Apoptosis , Niño , Preescolar , Femenino , Humanos , Masculino , Pronóstico , Proteínas del Envoltorio Viral/análisis , Proteínas no Estructurales Virales/análisis
7.
Nat Genet ; 37(5): 507-13, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15838506

RESUMEN

Dengue fever and dengue hemorrhagic fever are mosquito-borne viral diseases. Dendritic cell-specific ICAM-3 grabbing nonintegrin (DC-SIGN1, encoded by CD209), an attachment receptor of dengue virus, is essential for productive infection of dendritic cells. Here, we report strong association between a promoter variant of CD209, DCSIGN1-336, and risk of dengue fever compared with dengue hemorrhagic fever or population controls. The G allele of the variant DCSIGN1-336 was associated with strong protection against dengue fever in three independent cohorts from Thailand, with a carrier frequency of 4.7% in individuals with dengue fever compared with 22.4% in individuals with dengue hemorrhagic fever (odds ratio for risk of dengue hemorrhagic fever versus dengue fever: 5.84, P = 1.4 x 10(-7)) and 19.5% in controls (odds ratio for protection: 4.90, P = 2 x 10(-6)). This variant affects an Sp1-like binding site and transcriptional activity in vitro. These results indicate that CD209 has a crucial role in dengue pathogenesis, which discriminates between severe dengue fever and dengue hemorrhagic fever. This may have consequences for therapeutic and preventive strategies.


Asunto(s)
Moléculas de Adhesión Celular/genética , Dengue/genética , Lectinas Tipo C/genética , Regiones Promotoras Genéticas , Receptores de Superficie Celular/genética , Índice de Severidad de la Enfermedad , Dengue/fisiopatología , Humanos , Polimorfismo Genético
8.
J Infect Public Health ; 17(5): 897-905, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569269

RESUMEN

BACKGROUND: The efficacy of the viral clearance and clinical outcomes of favipiravir (FPV) in outpatients being treated for coronavirus disease 2019 (COVID-19) is unclear. Ivermectin (IVM), niclosamide (NCL), and FPV demonstrated synergistic effects in vitro for exceed 78% inhibiting severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) replication. METHODS: A phase 2, open-label, 1:1, randomized, controlled trial was conducted on Thai patients with mild-to-moderate COVID-19 who received either combination FPV/IVM/NCL therapy or FPV alone to assess the rate of viral clearance among individuals with mild-to-moderate COVID-19. RESULTS: Sixty non-high-risk comorbid patients with mild-to-moderate COVID-19 were randomized; 30 received FPV/IVM/NCL, and 30 received FPV alone. Mixed-effects multiple linear regression analysis of the cycle threshold value from SARS-CoV-2 PCR demonstrated no statistically significant differences in viral clearance rates between the combined FPV/IVM/NCL therapy group and the FPV-alone group. World Health Organization Clinical Progression scores and symptomatic improvement did not differ between arms on days 3, 6, and 10, and no adverse events were reported. No patients required hospitalization, intensive care unit admission, or supplemental oxygen or died within 28 days. C-reactive protein on day 3 was lower in the FPV/IVM/NCL group. CONCLUSION: Viral clearance rates did not differ significantly between the FPV/IVM/NCL combination therapy and FPV-alone groups of individuals with mild-to-moderate COVID-19, although the combined regimen demonstrated a synergistic effect in vitro. No discernible clinical benefit was observed. Further research is required to explore the potential benefits of FVP beyond its antiviral effects. TRIAL REGISTRATION: TCTR20230403007, Registered 3 April 2023 - Retrospectively registered,https://trialsearch.who.int/Trial2.aspx?TrialID=TCTR20230403007.


Asunto(s)
Amidas , COVID-19 , Pirazinas , Adulto , Humanos , SARS-CoV-2 , Ivermectina/uso terapéutico , Niclosamida , Aceleración , Resultado del Tratamiento , Antivirales/efectos adversos
9.
ACS Infect Dis ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38943594

RESUMEN

The envelope protein of dengue virus (DENV) is a primary target of the humoral immune response. The domain III of the DENV envelope protein (EDIII) is known to be the target of multiple potently neutralizing antibodies. One such antibody is 3H5, a mouse antibody that binds strongly to EDIII and potently neutralizes DENV serotype 2 (DENV-2) with unusually minimal antibody-dependent enhancement (ADE). To selectively display the binding epitope of 3H5, we strategically modified DENV-2 EDIII by shielding other known epitopes with engineered N-glycosylation sites. The modifications resulted in a glycosylated EDIII antigen termed "EDIII mutant N". This antigen was successfully used to sift through a dengue-immune scFv-phage library to select for scFv antibodies that bind to or closely surround the 3H5 epitope. The selected scFv antibodies were expressed as full-length human antibodies and showed potent neutralization activity to DENV-2 with low or negligible ADE resembling 3H5. These findings not only demonstrate the capability of the N-glycosylated EDIII mutant N as a tool to drive an epitope-directed antibody selection campaign but also highlight its potential as a dengue immunogen. This glycosylated antigen shows promise in focusing the antibody response toward a potently neutralizing epitope while reducing the risk of antibody-dependent enhancement.

10.
J Immunol ; 187(1): 424-33, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21642539

RESUMEN

The complement system plays a pivotal protective role in the innate immune response to many pathogens including flaviviruses. Flavivirus nonstructural protein 1 (NS1) is a secreted nonstructural glycoprotein that accumulates in plasma to high levels and is displayed on the surface of infected cells but absent from viral particles. Previous work has defined an immune evasion role of flavivirus NS1 in limiting complement activation by forming a complex with C1s and C4 to promote cleavage of C4 to C4b. In this study, we demonstrate a second mechanism, also involving C4 and its active fragment C4b, by which NS1 antagonizes complement activation. Dengue, West Nile, or yellow fever virus NS1 directly associated with C4b binding protein (C4BP), a complement regulatory plasma protein that attenuates the classical and lectin pathways. Soluble NS1 recruited C4BP to inactivate C4b in solution and on the plasma membrane. Mapping studies revealed that the interaction sites of NS1 on C4BP partially overlap with the C4b binding sites. Together, these studies further define the immune evasion potential of NS1 in reducing the functional capacity of C4 in complement activation and control of flavivirus infection.


Asunto(s)
Activación de Complemento/inmunología , Flavivirus/inmunología , Antígenos de Histocompatibilidad/inmunología , Proteínas no Estructurales Virales/inmunología , Animales , Línea Celular , Complemento C4b/antagonistas & inhibidores , Complemento C4b/metabolismo , Proteína de Unión al Complemento C4b , Cricetinae , Virus del Dengue/inmunología , Virus del Dengue/patogenicidad , Flavivirus/patogenicidad , Antígenos de Histocompatibilidad/metabolismo , Humanos , Unión Proteica/inmunología , Proteínas no Estructurales Virales/metabolismo , Virus del Nilo Occidental/inmunología , Virus del Nilo Occidental/patogenicidad , Virus de la Fiebre Amarilla/inmunología , Virus de la Fiebre Amarilla/patogenicidad
11.
PLOS Glob Public Health ; 3(8): e0002169, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37552632

RESUMEN

Dengue is a mosquito-borne disease caused by dengue virus (DENV) serotypes 1-4 which affects 100-400 million adults and children each year. Reverse-transcriptase (RT) quantitative polymerase chain reaction (qPCR) assays are the current gold-standard in diagnosis and serotyping of infections, but their use in low-middle income countries (LMICs) has been limited by laboratory infrastructure requirements. Loop-mediated isothermal amplification (LAMP) assays do not require thermocycling equipment and therefore could potentially be deployed outside laboratories and/or miniaturised. This scoping literature review aimed to describe the analytical and diagnostic performance characteristics of previously developed serotype-specific dengue RT-LAMP assays and evaluate potential for use in portable molecular diagnostic devices. A literature search in Medline was conducted. Studies were included if they were listed before 4th May 2022 (no prior time limit set) and described the development of any serotype-specific DENV RT-LAMP assay ('original assays') or described the further evaluation, adaption or implementation of these assays. Technical features, analytical and diagnostic performance characteristics were collected for each assay. Eight original assays were identified. These were heterogenous in design and reporting. Assays' lower limit of detection (LLOD) and linear range of quantification were comparable to RT-qPCR (with lowest reported values 2.2x101 and 1.98x102 copies/ml, respectively, for studies which quantified target RNA copies) and analytical specificity was high. When evaluated, diagnostic performance was also high, though reference diagnostic criteria varied widely, prohibiting comparison between assays. Fourteen studies using previously described assays were identified, including those where reagents were lyophilised or 'printed' into microfluidic channels and where several novel detection methods were used. Serotype-specific DENV RT-LAMP assays are high-performing and have potential to be used in portable molecular diagnostic devices if they can be integrated with sample extraction and detection methods. Standardised reporting of assay validation and diagnostic accuracy studies would be beneficial.

12.
mBio ; 14(5): e0144123, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37702492

RESUMEN

IMPORTANCE: Dengue virus (DENV) is a major human pathogen that can cause hemorrhagic fever and shock syndrome. One important factor of DENV pathogenicity is non-structural protein 1 (NS1), a glycoprotein that is secreted from infected cells. Here we study the mode of action of the widely used drug ivermectin, used to treat parasitic infections and recently shown to lower NS1 blood levels in DENV-infected patients. We found that ivermectin blocks the nuclear transport of transcription factors required for the expression of chaperones that support the folding and secretion of glycoproteins, including NS1. Impairing nuclear transport of these transcription factors by ivermectin or depleting them from infected cells dampens NS1 folding and thus its secretion. These results reveal a novel mode of action of ivermectin that might apply to other flaviviruses as well.


Asunto(s)
Virus del Dengue , Dengue , Humanos , Virus del Dengue/genética , Virus del Dengue/metabolismo , Chaperón BiP del Retículo Endoplásmico , Ivermectina/farmacología , Ivermectina/metabolismo , Carioferinas , Chaperonas Moleculares/metabolismo , Factores de Transcripción/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
13.
BMC Pharmacol Toxicol ; 23(1): 41, 2022 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-35717393

RESUMEN

BACKGROUND: COVID-19 pandemic has claimed millions of lives and devastated the health service system, livelihood, and economy in many countries worldwide. Despite the vaccination programs in many countries, the spread of the pandemic continues, and effective treatment is still urgently needed. Although some antiviral drugs have been shown to be effective, they are not widely available. Repurposing of anti-parasitic drugs with in vitro anti-SARS-CoV-2 activity is a promising approach being tested in many clinical trials. Combination of these drugs is a plausible way to enhance their effectiveness. METHODS: The in vitro anti-SARS-CoV-2 activity of combinations of niclosamide, ivermectin and chloroquine were evaluated in Vero E6 and lung epithelial cells, Calu-3. RESULTS: All the two-drug combinations showed higher potency resulting in up to 4-fold reduction in the half maximal inhibitory concentration (IC50) values compared to individual drugs. Among these combinations, niclosamide-ivermectin achieved the highest inhibitory level of over 99%. Combination synergy analysis showed niclosamide-ivermectin combination to have the best synergy score with a mean Loewe synergy score of 4.28 and a peak synergy score of 24.6 in Vero E6 cells and a mean Loewe synergy score of 3.82 and a peak synergy score of 10.86 in Calu-3 cells. CONCLUSIONS: The present study demonstrated the benefit of drug combinations on anti-SARS-CoV-2 activity. Niclosamide and ivermectin showed the best synergistic profile and should be further tested in clinical trials.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Antivirales/farmacología , Combinación de Medicamentos , Humanos , Ivermectina/farmacología , Niclosamida/farmacología , Pandemias
14.
PLoS One ; 17(5): e0266136, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35617160

RESUMEN

Non-structural protein 1 (NS1) is a glycoprotein component of dengue virus (DENV) that is essential for viral replication, infection and immune evasion. Immunization with NS1 has been shown to elicit antibody-mediated immune responses which protect mice against DENV infections. Here, we obtained peripheral blood mononuclear cells from human subjects with secondary dengue infections, which were used to construct a dengue immune phage library displaying single-chain variable fragments. Phage selective for DENV NS1 were obtained by biopanning. Twenty-one monoclonal antibodies (mAbs) against DENV NS1 were generated from the selected phage and characterized in detail. We found most anti-NS1 mAbs used IGHV1 heavy chain antibody genes. The mAbs were classified into strongly and weakly-reactive groups based on their binding to NS1 expressed in dengue virus 2 (DENV2)-infected cells. Antibody binding experiments with recombinant NS1 proteins revealed that the mAbs recognize conformational epitopes on the ß-ladder domain (amino acid residues 178-273) of DENV NS1. Epitope mapping studies on alanine-substituted NS1 proteins identified distinct but overlapping epitopes. Protruding amino acids distributed around the spaghetti loop are required for the binding of the strongly-reactive mAbs, whereas the recognition residues of the weakly-reactive mAbs are likely to be located in inaccessible sites facing toward the cell membrane. This information could guide the design of an NS1 epitope-based vaccine that targets cross-reactive conserved epitopes on cell surface-associated DENV NS1.


Asunto(s)
Virus del Dengue , Dengue , Animales , Anticuerpos Monoclonales , Anticuerpos Antivirales , Reacciones Cruzadas , Virus del Dengue/genética , Epítopos , Humanos , Leucocitos Mononucleares/metabolismo , Ratones , Proteínas Recombinantes , Proteínas no Estructurales Virales/genética
15.
Viruses ; 14(6)2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35746742

RESUMEN

Dengue virus (DENV) infection is a significant global health problem. There are no specific therapeutics or widely available vaccines. Early diagnosis is critical for patient management. Viral RNA detection by multiplex RT-PCR using multiple pairs of primers/probes allowing the simultaneous detection of all four DENV serotypes is commonly used. However, increasing the number of primers in the RT-PCR reaction reduces the sensitivity of detection due to the increased possibility of primer dimer formation. Here, a one tube, singleplex real-time RT-PCR specific to DENV 3'-UTR was developed for the detection and quantification of pan-DENV with no cross reactivity to other flaviviruses. The sensitivity of DENV detection was as high as 96.9% in clinical specimens collected at the first day of hospitalization. Our assay provided equivalent PCR efficiency and RNA quantification among each DENV serotype. The assay's performance was comparable with previously established real-time RT-PCR targeting coding sequences. Using both assays on the same specimens, our results indicate the presence of defective virus particles in the circulation of patients infected with all serotypes. Dual regions targeting RT-PCR enhanced the sensitivity of viral genome detection especially during the late acute phase when viremia rapidly decline and an incomplete viral genome was clinically evident.


Asunto(s)
Virus del Dengue , Dengue , Dengue/diagnóstico , Virus del Dengue/genética , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sensibilidad y Especificidad
16.
PLoS Negl Trop Dis ; 16(4): e0010266, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35389998

RESUMEN

Laboratory diagnosis of dengue virus (DENV) infection including DENV serotyping requires skilled labor and well-equipped settings. DENV NS1 lateral flow rapid test (LFT) provides simplicity but lacks ability to identify serotype. A simple, economical, point-of-care device for serotyping is still needed. We present a gravity driven, smartphone compatible, microfluidic device using microcapillary film (MCF) to perform multiplex serotype-specific immunoassay detection of dengue virus NS1. A novel device-termed Cygnus-with a stackable design allows analysis of 1 to 12 samples in parallel in 40 minutes. A sandwich enzyme immunoassay was developed to specifically detect NS1 of all four DENV serotypes in one 60-µl plasma sample. This test aims to bridge the gap between rapid LFT and laboratory microplate ELISAs in terms of sensitivity, usability, accessibility and speed. The Cygnus NS1 assay was evaluated with retrospective undiluted plasma samples from 205 DENV infected patients alongside 50 febrile illness negative controls. Against the gold standard RT-PCR, clinical sensitivity for Cygnus was 82% in overall (with 78, 78, 80 and 76% for DENV1-4, respectively), comparable to an in-house serotyping NS1 microplate ELISA (82% vs 83%) but superior to commercial NS1-LFT (82% vs 74%). Specificity of the Cygnus device was 86%, lower than that of NS1-microplate ELISA and NS1-LFT (100% and 98%, respectively). For Cygnus positive samples, identification of DENV serotypes DENV2-4 matched those by RT-PCR by 100%, but for DENV1 capillaries false positives were seen, suggesting an improved DENV1 capture antibody is needed to increase specificity. Overall performance of Cygnus showed substantial agreement to NS1-microplate ELISA (κ = 0.68, 95%CI 0.58-0.77) and NS1-LFT (κ = 0.71, 95%CI 0.63-0.80). Although further refinement for DENV-1 NS1 detection is needed, the advantages of multiplexing and rapid processing time, this Cygnus device could deliver point-of-care NS1 antigen testing including serotyping for timely DENV diagnosis for epidemic surveillance and outbreak prediction.


Asunto(s)
Virus del Dengue , Dengue , Anticuerpos Monoclonales , Anticuerpos Antivirales , Antígenos Virales , Ensayo de Inmunoadsorción Enzimática , Humanos , Estudios Retrospectivos , Sensibilidad y Especificidad , Serogrupo , Teléfono Inteligente , Proteínas no Estructurales Virales/genética
17.
Sci Rep ; 12(1): 21548, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36513793

RESUMEN

The non-structural protein-1 (NS1) of dengue virus (DENV) contributes to several functions related to dengue disease pathogenesis as well as diagnostic applications. Antibodies against DENV NS1 can cross-react with other co-circulating flaviviruses, which may lead to incorrect diagnosis. Herein, five anti-DENV NS1 monoclonal antibodies (mAbs) were investigated. Four of them (1F11, 2E3, 1B2, and 4D2) cross-react with NS1 of all four DENV serotypes (pan-DENV mAbs), whereas the other (2E11) also reacts with NS1 of other flaviviruses (flavi-cross-reactive mAb). The binding epitopes recognized by these mAbs were found to overlap a region located on the disordered loop of the NS1 wing domain (amino acid residues 104 to 123). Fine epitope mapping employing phage display technology and alanine-substituted DENV2 NS1 mutants indicates the critical binding residues W115, K116, and K120 for the 2E11 mAb, which are conserved among flaviviruses. In contrast, the critical binding residues of four pan-DENV mAbs include both flavi-conserved residues (W115 to G119) and DENV-conserved flanking residues (K112, Y113, S114 and A121, K122). Our results highlight DENV-conserved residues in cross-reactive epitopes that distinguish pan-DENV antibodies from the flavi-cross-reactive antibody. These antibodies can be potentially applied to differential diagnosis of DENV from other flavivirus infections.


Asunto(s)
Virus del Dengue , Dengue , Flavivirus , Humanos , Anticuerpos Antivirales , Proteínas no Estructurales Virales/genética , Reacciones Cruzadas , Epítopos , Anticuerpos Monoclonales
18.
Viruses ; 13(7)2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202570

RESUMEN

Dengue is a mosquito-borne viral disease causing significant health and economic burdens globally. The dengue virus (DENV) comprises four serotypes (DENV1-4). Usually, the primary infection is asymptomatic or causes mild dengue fever (DF), while secondary infections with a different serotype increase the risk of severe dengue disease (dengue hemorrhagic fever, DHF). Complement system activation induces inflammation and tissue injury, contributing to disease pathogenesis. However, in asymptomatic or primary infections, protective immunity largely results from the complement system's lectin pathway (LP), which is activated through foreign glycan recognition. Differences in N-glycans displayed on the DENV envelope membrane influence the lectin pattern recognition receptor (PRR) binding efficiency. The important PRR, mannan binding lectin (MBL), mediates DENV neutralization through (1) a complement activation-independent mechanism via direct MBL glycan recognition, thereby inhibiting DENV attachment to host target cells, or (2) a complement activation-dependent mechanism following the attachment of complement opsonins C3b and C4b to virion surfaces. The serum concentrations of lectin PRRs and their polymorphisms influence these LP activities. Conversely, to escape the LP attack and enhance the infectivity, DENV utilizes the secreted form of nonstructural protein 1 (sNS1) to counteract the MBL effects, thereby increasing viral survival and dissemination.


Asunto(s)
Lectina de Unión a Manosa de la Vía del Complemento , Virus del Dengue/inmunología , Virus del Dengue/patogenicidad , Dengue/inmunología , Dengue/virología , Animales , Humanos , Evasión Inmune , Lectina de Unión a Manosa/sangre , Lectina de Unión a Manosa/genética , Lectina de Unión a Manosa/inmunología , Lectina de Unión a Manosa/metabolismo , Polimorfismo de Nucleótido Simple , Polisacáridos/inmunología , Polisacáridos/metabolismo , Receptores de Reconocimiento de Patrones/sangre , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Dengue Grave/inmunología , Dengue Grave/virología , Proteínas no Estructurales Virales/metabolismo , Virulencia
19.
Am J Trop Med Hyg ; 105(3): 771-776, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34280136

RESUMEN

Dengue (DENV) infections are a public health concern worldwide and thus early diagnosis is important to ensure appropriate clinical management. The rapid diagnostic test (RDT) targets nonstructural protein 1 (NS1) detection and is the main tool used for diagnostic purpose. In this study, we evaluated the performance of a new rapid and semi-quantitative microfluidic DENV NS1 immuno-magnetic agglutination assay or IMA (ViroTrack Dengue Acute, BluSense Diagnostics, Copenhagen, Denmark). We studied 233 subjects confirmed to have DENV infection (by a real-time reverse transcriptase polymerase chain reaction) and 200 control samples were taken from patients with confirmed diagnoses of other febrile illnesses, in Thailand. Samples were tested using the NS1 antigen (Ag) detection methods: in-house NS1 Ag ELISA (ELISA), SD BIOLINE Dengue NS1 Ag RDT (ICT), and ViroTrack Dengue Acute (IMA). Sensitivities of these tests were 86.3%, 78.9%, and 85.5%, respectively. All tests showed high specificity (100%, 99%, and 97% for ELISA, ICT, and IMA, respectively). The sensitivities of both RDTs were affected by the low sensitivity to DENV-2 and DENV-4. NS1 Ag was detected in every patient on day 1 and day 2 after onset of illness by ELISA and IMA with a decline in detection rates over time after day 6 of illness. NS1 detection rate using ICT decreased from 100% on day 1 of illness to 98.6% on day 2 after onset of illness. By day 6, the detection rate was 45.9%. Thus, IMA performed better than ICT for early and rapid diagnosis of DENV infections in endemic countries.


Asunto(s)
Antígenos Virales/inmunología , Virus del Dengue/inmunología , Dengue/diagnóstico , Proteínas no Estructurales Virales/inmunología , Adolescente , Adulto , Anciano , Pruebas de Aglutinación , Antígenos Virales/sangre , Dengue/sangre , Femenino , Glicoproteínas/sangre , Glicoproteínas/inmunología , Humanos , Dispositivos Laboratorio en un Chip , Imanes , Masculino , Procedimientos Analíticos en Microchip , Persona de Mediana Edad , Sensibilidad y Especificidad , Pruebas Serológicas , Proteínas no Estructurales Virales/sangre , Adulto Joven
20.
Microbiol Resour Announc ; 10(17)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33927030

RESUMEN

We present RNA sequencing data sets and their genome sequence assembly for dengue virus that was isolated from a patient with dengue hemorrhagic fever and serially propagated in Vero cells. RNA sequencing data obtained from the first, third, and fifth passages and their corresponding whole-genome sequences are provided in this work.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA