Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(6): 3773-3784, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38301281

RESUMEN

A longstanding challenge in catalysis by noble metals has been to understand the origin of enhancements of rates of hydrogen transfer that result from the bonding of oxygen near metal sites. We investigated structurally well-defined catalysts consisting of supported tetrairidium carbonyl clusters with single-atom (apical iridium) catalytic sites for ethylene hydrogenation. Reaction of the clusters with ethylene and H2 followed by O2 led to the onset of catalytic activity as a terminal CO ligand at each apical Ir atom was removed and bridging dioxygen ligands replaced CO ligands at neighboring (basal-plane) sites. The presence of the dioxygen ligands caused a 6-fold increase in the catalytic reaction rate, which is explained by the electron-withdrawing capability induced by the bridging dioxygen ligands, consistent with the inference that reductive elimination is rate-determining. Electronic-structure calculations demonstrate an additional role of the dioxygen ligands, changing the mechanism of hydrogen transfer from one involving equatorial hydride ligands to that involving bridging hydride ligands. This mechanism is made evident by an inverse kinetic isotope effect observed in ethylene hydrogenation reactions with H2 and, alternatively, with D2 on the cluster incorporating the dioxygen ligands and is a consequence of quasi-equilibrated hydrogen transfer in this catalyst. The same mechanism accounts for rate enhancements induced by the bridging dioxygen ligands for the catalytic reaction of H2 with D2 to give HD. We posit that the mechanism involving bridging hydride ligands facilitated by oxygen ligands remote from the catalytic site may have some generality in catalysis by oxide-supported noble metals.

2.
J Am Chem Soc ; 134(11): 5022-5, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22397595

RESUMEN

The formation of iridium clusters from supported mononuclear iridium complexes in H(2) at 300 K and 1 bar was investigated by spectroscopy and atomic-resolution scanning transmission electron microscopy. The first steps of cluster formation from zeolite-supported Ir(C(2)H(4))(2) complexes are triggered by the activation of H(2) and the formation of iridium hydride, accompanied by the breaking of iridium-support bonds. This reactivity can be controlled by the choice of ligands on the iridium, which include the support.

3.
Langmuir ; 28(35): 12806-15, 2012 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-22861660

RESUMEN

Zeolite Hß- and γ-Al(2)O(3)-supported mononuclear iridium complexes were synthesized by the reaction of Ir(C(2)H(4))(2)(acac) (acac is acetylacetonate) with each of the supports. The characterization of the surface species by extended X-ray absorption fine structure (EXAFS) and infrared (IR) spectroscopies demonstrated the removal of acac ligands during chemisorption, leading to the formation of essentially isostructural Ir(C(2)H(4))(2) complexes anchored to each support by two Ir-O(support) bonds. Atomic-resolution aberration-corrected scanning transmission electron microscopy (STEM) images confirm the spectra, showing only isolated Ir atoms on the supports with no evidence of iridium clusters. These samples, together with previously reported Ir(C(2)H(4))(2) complexes on zeolite HY, zeolite HSSZ-53, and MgO supports, constitute a family of isostructural supported iridium complexes. Treatment with CO led to the replacement of the ethylene ligands on iridium with CO ligands, and the ν(CO) frequencies of these complexes and white line intensities in the X-ray absorption spectra at the Ir L(III) edge show that the electron density on iridium increases in the following order on these supports: zeolite HY < zeolite Hß < zeolite HSSZ-53 ≪ γ-Al(2)O(3) < MgO. The IR spectra of the iridium carbonyl complexes treated in flowing C(2)H(4) show that the CO ligands were replaced by C(2)H(4), with the average number of C(2)H(4) groups per Ir atom increasing as the amount of iridium was increasingly electron-deficient. In contrast to the typical supported catalysts incorporating metal clusters or particles that are highly nonuniform, the samples reported here, incorporating uniform isostructural iridium complexes, provide unprecedented opportunities for a molecular-level understanding of how supports affect the electronic properties, reactivities, and catalytic properties of supported metal species.

4.
Nano Lett ; 11(12): 5537-41, 2011 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-22088173

RESUMEN

Using aberration-corrected scanning transmission electron microscopy (STEM), we imaged iridium atoms in isolated iridium complexes in the one-dimensional nonintersecting 14-ring channels of zeolite SSZ-53. STEM allows tracking of the movement of atoms in the channels, demonstrating the interaction of iridium with the zeolite framework (channel confinement) and providing a direct visualization of the initial steps of metal nanocluster formation. The results demonstrate how STEM can be used to help design improved catalysts by identifying the catalytic sites and observing how they change in reactive atmospheres.

5.
J Am Chem Soc ; 133(40): 16186-95, 2011 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-21866969

RESUMEN

The performance of a supported catalyst is influenced by the size and structure of the metal species, the ligands bonded to the metal, and the support. Resolution of these effects has been lacking because of the lack of investigations of catalysts with uniform and systematically varied catalytic sites. We now demonstrate that the performance for ethene hydrogenation of isostructural iridium species on supports with contrasting properties as ligands (electron-donating MgO and electron-withdrawing HY zeolite) can be elucidated on the basis of molecular concepts. Spectra of the working catalysts show that the catalytic reaction rate is determined by the dissociation of H(2) when the iridium, either as mono- or tetra-nuclear species, is supported on MgO and is not when the support is the zeolite. The neighboring iridium sites in clusters are crucial for activation of both H(2) and C(2)H(4) when the support is MgO but not when it is the zeolite, because the electron-withdrawing properties of the zeolite support enable even single site-isolated Ir atoms to bond to both C(2)H(4) and H(2) and facilitate the catalysis.

6.
Ginekol Pol ; 92(12): 856-859, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33914325

RESUMEN

OBJECTIVES: To determine the COVID-19 pandemic's effect on female sexual functions among Turkish women. MATERIAL AND METHODS: The present study was performed by using the previous study data that was conducted before the pandemic to detect female sexual function by using questionnaires. Comparison of Female Sexual Function Index (FSFI), Beck Anxiety Inventory (BAI), and Beck Depression Inventory (BDI) scores in women during and before the pandemic. Participants were asked to fill questionnaire forms again. RESULTS: FSFI scores of the participants were higher before the pandemic, however, this finding was not statistically significant (21.8 vs 21.0, p = 0.27). BAI and BDI scores with high scores accompanied by anxiety and depression were found statistically significantly higher in the study (11.2 vs 13.3, p < 0.01; 10.0 vs 13.7, p < 0.01; respectively). BAI scores had a negative correlation with FSFI scores, however, BDI scores had not a significant correlation with FSFI scores in the present study (p < 0.01, correlation coefficient = -0.302; p = 0.07; correlation coefficient = -0.183; respectively). CONCLUSIONS: Pandemic seems not to affect female sexual behavior. However, the pandemic is associated with anxiety and depression.


Asunto(s)
COVID-19 , Disfunciones Sexuales Fisiológicas , Depresión/diagnóstico , Depresión/epidemiología , Femenino , Humanos , Pandemias , SARS-CoV-2 , Conducta Sexual , Disfunciones Sexuales Fisiológicas/epidemiología , Encuestas y Cuestionarios
8.
10.
Nat Nanotechnol ; 9(6): 459-65, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24747837

RESUMEN

The active sites of enzymes are contained within nanoscale environments that exhibit exquisite levels of specificity to particular molecules. The development of such nanoscale environments on synthetic surfaces, which would be capable of discriminating between molecules that would nominally bind in a similar way to the surface, could be of use in nanosensing, selective catalysis and gas separation. However, mimicking such subtle behaviour, even crudely, with a synthetic system remains a significant challenge. Here, we show that the reactive sites on the surface of a tetrairidium cluster can be controlled by using three calixarene-phosphine ligands to create a selective nanoscale environment at the metal surface. Each ligand is 1.4 nm in length and envelopes the cluster core in a manner that discriminates between the reactivities of the basal-plane and apical iridium atoms. CO ligands are initially present on the clusters and can be selectively removed from the basal-plane sites by thermal dissociation and from the apical sites by reactive decarbonylation with the bulky reactant trimethylamine-N-oxide. Both steps lead to the creation of metal sites that can bind CO molecules, but only the reactive decarbonylation step creates vacancies that are also able to bond to ethylene, and catalyse its hydrogenation.

11.
J Phys Chem Lett ; 3(14): 1865-71, 2012 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-26292006

RESUMEN

Supported triosmium clusters, formed from Os3(CO)12 on MgO, were treated in helium at 548 K for 2 h, causing fragmentation of the cluster frame and the formation of mononuclear osmium dicarbonyls. The cluster breakup and the resultant fragmented species were characterized by infrared and X-ray absorption spectroscopies, and the fragmented species were imaged by scanning transmission electron microscopy. The spectra identify the surface osmium complexes as Os(CO)2{Osupport}n (n = 3 or 4) (where the braces denote support surface atoms). The images show site-isolated Os atoms in mononuclear osmium species on MgO. The intensity analysis on the images of the MgO(110) face showed that the Os atoms were located atop Mg columns. This information led to a model of the Os(CO)2 on MgO(110), with the distances approximated as those determined by EXAFS spectroscopy, which are an average over the whole MgO surface; the results imply that these complexes were located at Mg vacancies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA